Skip to main content

Advertisement

Log in

Immunogenicity Risk Assessment for an Engineered Human Cytokine Analogue Expressed in Different Cell Substrates

  • Review Article
  • Theme: Compendium of Immunogenicity Risk Assessments: an Industry Guidance Built on Experience and Published Work
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The purpose of this article is to illustrate how performance of an immunogenicity risk assessment at the earliest stage of product development can be instructive for critical early decision-making such as choice of host system for expression of a recombinant therapeutic protein and determining the extent of analytical characterization and control of heterogeneity in co- and post-translational modifications. Application of a risk-based approach for a hypothetical recombinant DNA analogue of a human endogenous cytokine with immunomodulatory functions is described. The manner in which both intrinsic and extrinsic factors could interact to influence the relative scale of risk associated with expression in alternative hosts, namely Chinese hamster ovary (CHO) cells, Pichia pastoris, Escherichia coli, or Nicotinia tabacum is considered in relation to the development of the investigational product to treat an autoimmune condition. The article discusses how particular product-related variants (primary amino acid sequence modifications and post-translational glycosylation or other modifications) and process-derived impurities (host cell proteins, endotoxins, beta-glucans) associated with the different expression systems might influence the impact of immunogenicity on overall clinical benefit versus risk for a therapeutic protein candidate that has intrinsic MHC Class II binding potential. The implications of the choice of expression system for relative risk are discussed in relation to specific actions for evaluation and measures for risk mitigation, including use of in silico and in vitro methods to understand intrinsic immunogenic potential relative to incremental risk associated with non-human glycan and protein impurities. Finally, practical guidance on presentation of this information in regulatory submissions to support clinical development is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Food and Drug Administration. Guidance for industry—immunogenicity assessment for therapeutic protein products, FDA, CDER/CBER; 2014.

  2. European Medicines Agency. Guideline on immunogenicity assessment of therapeutic proteins (EMEA/CHMP/BMWP/14327/2006 Rev 1). Committee for Medicinal Products for Human Use (CHMP); 2017. Retrieved from http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/06/WC500228861.pdf. Accessed 12 Oct 2019.

  3. Tangri S, Mothé BR, Eisenbraun J, Sidney J, Southwood S, Briggs K, et al. Rationally engineered therapeutic proteins with reduced immunogenicity. J Immunol. 2005;174(6):3187–96. https://doi.org/10.4049/jimmunol.174.6.3187.

    Article  CAS  PubMed  Google Scholar 

  4. De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482–90. https://doi.org/10.1016/j.it.2007.07.011.

    Article  CAS  PubMed  Google Scholar 

  5. Weber CA, Mehta PJ, Ardito M, Moise L, Martin B, De Groot AS. T cell epitope: friend or foe? Immunogenicity of biologics in context. Adv Drug Deliv Rev. 2009;61(11):965–76. https://doi.org/10.1016/j.addr.2009.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams EW, Ratner DM, Seeberger PH, Hacohen N. Carbohydrate-mediated targeting of antigen to dendritic cells leads to enhanced presentation of antigen to T cells. Chembiochem. 2008;9(2):294–303. https://doi.org/10.1002/cbic.200700310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verthelyi D, Wang V. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One. 2010;5(12):e15252. https://doi.org/10.1371/journal.pone.0015252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rane SS, Dearman RJ, Kimber I, Uddin S, Bishop S, Shah M, et al. Impact of a heat shock protein impurity on the immunogenicity of biotherapeutic monoclonal antibodies. Pharm Res. 2019;36(4):51. https://doi.org/10.1007/s11095-019-2586-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17. https://doi.org/10.1056/NEJMoa074943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jefferis R. Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res. 2016;2016:5358272. https://doi.org/10.1155/2016/5358272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beck M. Agalsidase alfa for the treatment of Fabry disease: new data on clinical efficacy and safety. Expert Opin Biol Ther. 2009;9(2):255–61. https://doi.org/10.1517/14712590802658428.

    Article  CAS  PubMed  Google Scholar 

  12. Casademunt E, Martinelle K, Jernberg M, Winge S, Tiemeyer M, Biesert L, et al. The first recombinant human coagulation factor VIII of human origin: human cell line and manufacturing characteristics. Eur J Haematol. 2012;89(2):165–76. https://doi.org/10.1111/j.1600-0609.2012.01804.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dumont JA, Liu T, Low SC, Zhang X, Kamphaus G, Sakorafas P, et al. Prolonged activity of a recombinant factor VIII-fc fusion protein in hemophilia a mice and dogs. Blood. 2012;119(13):3024–30. https://doi.org/10.1182/blood-2011-08-367813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glaesner W, Vick AM, Millican R, Ellis B, Tschang SH, Tian Y, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an fc fusion protein. Diabetes Metab Res Rev. 2010;26(4):287–96. https://doi.org/10.1002/dmrr.1080.

    Article  CAS  PubMed  Google Scholar 

  15. Peters RT, Low SC, Kamphaus GD, Dumont JA, Amari JV, Lu Q, et al. Prolonged activity of factor IX as a monomeric fc fusion protein. Blood. 2010;115(10):2057–64. https://doi.org/10.1182/blood-2009-08-239665.

    Article  CAS  PubMed  Google Scholar 

  16. Wraith JE. Enzyme replacement therapy with idursulfase in patients with mucopolysaccharidosis type II. Acta Paediatr. 2008;97(457):76–8. https://doi.org/10.1111/j.1651-2227.2008.00661.x.

    Article  PubMed  Google Scholar 

  17. Zimran A, Pastores GM, Tylki-Szymanska A, Hughes DA, Elstein D, Mardach R, et al. Safety and efficacy of velaglucerase alfa in Gaucher disease type 1 patients previously treated with imiglucerase. Am J Hematol. 2013;88(3):172–8. https://doi.org/10.1002/ajh.23383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172. https://doi.org/10.3389/fmicb.2014.00172.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol. 2004;22(11):1399–408. https://doi.org/10.1038/nbt1029.

    Article  CAS  PubMed  Google Scholar 

  20. Burgess RR. Refolding solubilized inclusion body proteins. Meth Enzymol. 2009;463:259–82. https://doi.org/10.1016/S0076-6879(09)63017-2.

    Article  CAS  Google Scholar 

  21. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22(4):249–70. https://doi.org/10.1002/yea.1208.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–17. https://doi.org/10.1007/s00253-014-5732-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. European Medicines Agency. European public assessment report for Semglee, EMA/119474/2018, 25 January 2018. Retrieved from https://www.ema.europa.eu/en/documents/assessment-report/semglee-epar-public-assessment-report_en.pdf. Accessed 12 October 2019.

  24. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol. 2009;27(6):561–6. https://doi.org/10.1038/nbt.1544.

    Article  CAS  PubMed  Google Scholar 

  25. Hopkins D, Gomathinayagam S, Rittenhour AM, Du M, Hoyt E, Karaveg K, et al. Elimination of β-mannose glycan structures in Pichia pastoris. Glycobiology. 2011;21(12):1616–26. https://doi.org/10.1093/glycob/cwr108.

    Article  CAS  PubMed  Google Scholar 

  26. Ha S, Wang Y, Rustandi RR. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs. 2011;3(5):453–60. https://doi.org/10.4161/mabs.3.5.16891.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Raffaelli B, Reuter U. The biology of monoclonal antibodies: focus on calcitonin gene-related peptide for prophylactic migraine therapy. Neurotherapeutics. 2018;15(2):324–35. https://doi.org/10.1007/s13311-018-0622-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, et al. Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant Biotechnol J. 2015;13(8):1199–208. https://doi.org/10.1111/pbi.12428.

    Article  CAS  PubMed  Google Scholar 

  29. Zvirin T, Magrisso L, Yaari A, Shoseyov O. Stable expression of Adalimumab in Nicotiana tabacum. Mol Biotechnol. 2018;60(6):387–95. https://doi.org/10.1007/s12033-018-0075-6.

    Article  CAS  PubMed  Google Scholar 

  30. Ebo DG, Hagendorens MM, Bridts CH, De Clerck LS, Stevens WJ. Sensitization to cross-reactive carbohydrate determinants and the ubiquitous protein profilin: mimickers of allergy. Clin Exp Allergy. 2004;34(1):137–44. https://doi.org/10.1111/j.1365-2222.2004.01837.x.

    Article  CAS  PubMed  Google Scholar 

  31. Altmann F. Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo J Int. 2016;25(4):98–105. https://doi.org/10.1007/s40629-016-0115-3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Homann A, Schramm G, Jappe U. Glycans and glycan-specific IgE in clinical and molecular allergology: sensitization, diagnostics, and clinical symptoms. J Allergy Clin Immunol. 2017;140(2):356–68. https://doi.org/10.1016/j.jaci.2017.04.019.

    Article  CAS  PubMed  Google Scholar 

  33. European Medicines Agency. European public assessment report for Elelyso, EMA/CHMP/399615/2012, 03 July 2012 Rev.1.Retrieved from https://www.ema.europa.eu/en/documents/assessment-report/elelyso-epar-public-assessment-report_en.pdf. Accessed 12 October 2019.

  34. Rup B, Alon S, Amit-Cohen BC, Brill Almon E, Chertkoff R, Tekoah Y, et al. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems—the Taliglucerase alfa story. PLoS One. 2017;12(10):e0186211. https://doi.org/10.1371/journal.pone.0186211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Zafra CL, Quarmby V, Francissen K, Vanderlaan M, Zhu-Shimoni J. Host cell proteins in biotechnology-derived products: a risk assessment framework. Biotechnol Bioeng. 2015;112(11):2284–91. https://doi.org/10.1002/bit.25647.

    Article  CAS  PubMed  Google Scholar 

  36. Gilgunn S, El-Sabbahy H, Albrecht S, Gaikwad M, Corrigan K, Deakin L, et al. Identification and tracking of problematic host cell proteins removed by a synthetic, highly functionalized nonwoven media in downstream bioprocessing of monoclonal antibodies. J Chromatogr A. 2019;1595:28–38. https://doi.org/10.1016/j.chroma.2019.02.056.

    Article  CAS  PubMed  Google Scholar 

  37. Ratanji KD, Derrick JP, Kimber I, Thorpe R, Wadhwa M, Dearman RJ. Influence of Escherichia coli chaperone DnaK on protein immunogenicity. Immunology. 2017;150(3):343–55. https://doi.org/10.1111/imm.12689.

    Article  CAS  PubMed  Google Scholar 

  38. Vanderlaan M, Zhu-Shimoni J, Lin S, Gunawan F, Waerner T, Van Cott KE. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol Prog. 2018;34(4):828–37. https://doi.org/10.1002/btpr.2640.

    Article  CAS  PubMed  Google Scholar 

  39. Bailey-Kellogg C, Gutiérrez AH, Moise L, Terry F, Martin WD, De Groot AS. CHOPPI: a web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnol Bioeng. 2014;111(11):2170–82. https://doi.org/10.1002/bit.25286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One. 2015;10(4):e0125078. https://doi.org/10.1371/journal.pone.0125078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haile LA, Polumuri SK, Rao R, Kelley-Baker L, Kryndushkin D, Rajaiah R, et al. Cell based assay identifies TLR2 and TLR4 stimulating impurities in interferon beta. Sci Rep. 2017;7(1):10490. https://doi.org/10.1038/s41598-017-09981-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwarz H, Schmittner M, Duschl A, Horejs-Hoeck J. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PLoS One. 2014;9(12):e113840. https://doi.org/10.1371/journal.pone.0113840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qi C, Cai Y, Gunn L, Ding C, Li B, Kloecker G, et al. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood. 2011;117(25):6825–36. https://doi.org/10.1182/blood-2011-02-339812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang F, Li H, Chen Z, Welsh JP, Richardson D, et al. Demonstrating β-glucan clearance in CHO- and yeast-produced monoclonal antibodies during downstream purification processes. J Bioproces Biotech. 2014;4:185. https://doi.org/10.4172/2155-9821.1000185.

    Article  CAS  Google Scholar 

  45. Casadevall N, Dupuy E, Molho-Sabatier P, Tobelem G, Varet B, Mayeux P. Autoantibodies against erythropoietin in a patient with pure red-cell aplasia. N Engl J Med. 1996;334(10):630–3. https://doi.org/10.1056/NEJM199603073341004.

    Article  CAS  PubMed  Google Scholar 

  46. Seidl A, Hainzl O, Richter M, Fischer R, Böhm S, Deutel B, et al. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity. Pharm Res. 2012;29(6):1454–67. https://doi.org/10.1007/s11095-011-0621-4.

    Article  CAS  PubMed  Google Scholar 

  47. Rubic-Schneider T, Kuwana M, Christen B, Aßenmacher M, Hainzl O, Zimmermann F, et al. T-cell assays confirm immunogenicity of tungsten-induced erythropoietin aggregates associated with pure red cell aplasia. Blood Adv. 2017;1(6):367–79. https://doi.org/10.1182/bloodadvances.2016001842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bee JS, Nelson SA, Freund E, Carpenter JF, Randolph TW. Precipitation of a monoclonal antibody by soluble tungsten. J Pharm Sci. 2009;98(9):3290–301. https://doi.org/10.1002/jps.21707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang Y, Nashed-Samuel Y, Li C, Liu W, Pollastrini J, Mallard D, et al. Tungsten-induced protein aggregation: solution behavior. J Pharm Sci. 2009;98(12):4695–710. https://doi.org/10.1002/jps.21778.

    Article  CAS  PubMed  Google Scholar 

  50. Liu W, Swift R, Torraca G, Nashed-Samuel Y, Wen ZQ, Jiang Y, et al. Root cause analysis of tungsten-induced protein aggregation in pre-filled syringes. PDA J Pharm Sci Technol. 2010;64(1):11–9.

    CAS  PubMed  Google Scholar 

  51. Luo Y, Lu Z, Raso SW, Entrican C, Tangarone B. Dimers and multimers of monoclonal IgG1 exhibit higher in vitro binding affinities to Fcgamma receptors. MAbs. 2009;1(5):491–504. https://doi.org/10.4161/mabs.1.5.9631.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem. 2012;287(30):25266–79. https://doi.org/10.1074/jbc.M111.330902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rombach-Riegraf V, Karle AC, Wolf B, Sordé L, Koepke S, Gottlieb S, et al. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One. 2014;9(1):e86322. https://doi.org/10.1371/journal.pone.0086322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahmadi M, Bryson CJ, Cloake EA, Welch K, Filipe V, Romeijn S, et al. Small amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeutics. Pharm Res. 2015;32(4):1383–94. https://doi.org/10.1007/s11095-014-1541-x.

    Article  CAS  PubMed  Google Scholar 

  55. Moussa EM, Kotarek J, Blum JS, Marszal E, Topp EM. Physical characterization and innate immunogenicity of aggregated intravenous immunoglobulin (IGIV) in an in vitro cell-based model. Pharm Res. 2016;33(7):1736–51. https://doi.org/10.1007/s11095-016-1914-4.

    Article  CAS  PubMed  Google Scholar 

  56. Sauerborn M, Brinks V, Jiskoot W, Schellekens H. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci. 2010;31(2):53–9. https://doi.org/10.1016/j.tips.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  57. Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55. https://doi.org/10.1016/j.clim.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  58. Narhi LO, Luo Q, Wypych J, Torosantucci R, Hawe A, Fujimori K, et al. Chemical and biophysical characteristics of monoclonal antibody solutions containing aggregates formed during metal catalyzed oxidation. Pharm Res. 2017;34(12):2817–28. https://doi.org/10.1007/s11095-017-2262-8.

    Article  CAS  PubMed  Google Scholar 

  59. IEDB (2020) Immune Epitope Database and Analysis Resource. Retrieved from www.iedb.org

  60. Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008;93(2):578–83. https://doi.org/10.1210/jc.2007-2185.

    Article  CAS  PubMed  Google Scholar 

  61. Devaraj S, Dasu MR, Park SH, Jialal I. Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia. 2009;52(8):1665–8. https://doi.org/10.1007/s00125-009-1394-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32(4):457–67. https://doi.org/10.1016/j.immuni.2010.04.001.

    Article  CAS  PubMed  Google Scholar 

  63. Weinbuch D, Zölls S, Wiggenhorn M, Friess W, Winter G, Jiskoot W, et al. Micro-flow imaging and resonant mass measurement (Archimedes)--complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102(7):2152–65. https://doi.org/10.1002/jps.23552.

    Article  CAS  PubMed  Google Scholar 

  64. Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv. 2019 Sep - Oct;37(5):642–66. https://doi.org/10.1016/j.biotechadv.2019.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Manivannan V, Decker WW, Stead LG, Li JT, Campbell RL. Visual representation of National Institute of Allergy and Infectious Disease and Food Allergy and Anaphylaxis Network criteria for anaphylaxis. Int J Emerg Med. 2009;2(1):3–5. https://doi.org/10.1007/s12245-009-0093-z <cited in Table I>.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Johanna Mora for much encouragement and helpful commentary during the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Chamberlain.

Additional information

Guest Editor: Johanna Mora

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlain, P., Rup, B. Immunogenicity Risk Assessment for an Engineered Human Cytokine Analogue Expressed in Different Cell Substrates. AAPS J 22, 65 (2020). https://doi.org/10.1208/s12248-020-00443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00443-2

KEY WORDS

Navigation