Skip to main content
Log in

Quantitative Assessment of Pulmonary Targeting of Inhaled Corticosteroids Using Ex Vivo Receptor Binding Studies

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The goal of locally acting inhaled corticosteroids is to achieve distinct pulmonary effects with reduced systemic side effects. The present work using an ex vivo receptor binding model in rats was interested in assessing pulmonary targeting for several commercially available corticosteroids by monitoring receptor occupancies in the lung and systemic organs (liver, kidney, spleen, and brain) after intravenous (IV) injection or intratracheal (IT) instillation of a dry powder administration at a dose of 100 μg/kg. Pulmonary targeting, defined as the difference in cumulative receptor occupancies (AUCE) between the lung and kidney after pulmonary delivery, differed across the investigated corticosteroids (ΔAUCE range, 33 ± 46 to 143 ± 52% *h) with the highest degree found for corticosteroids with high systemic clearance and pronounced lipophilicity (presumably allowing a long pulmonary residence time). Additionally, this study demonstrated differences in the receptor occupancies across systemic organs. Using kidney receptor occupancies as the comparator, liver receptor occupancies were reduced (ΔAUCE range: − 157 ± 43 to 178 ± 42% *h) after IV and IT administration for corticosteroids with high intrinsic clearance, while they were increased for corticosteroid prodrugs due to hepatic activation. Spleen receptor occupancies were increased after IT (ΔAUCE range: 33 ± 35 to 135 ± 28% *h), but not after IV administration. This was especially true for slowly dissolving drugs. Reduced brain uptake was also observed for ciclesonide (CIC) and des-ciclesonide (desCIC), two compounds previously not investigated. In summary, ex vivo receptor binding studies represent a powerful tool to assess the fate of ICSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMs:

alveolar macrophages

AUCE :

accumulative receptor occupancy

BDP:

beclomethasone dipropionate

BMP:

17-beclomethasone monopropionate

BUD:

budesonide

CIC:

ciclesonide

CL:

systemic clearance

CLint :

hepatic intrinsic clearance

DCs:

dendritic cells

desCIC:

des-ciclesonide

FP:

fluticasone propionate

GR:

glucocorticoid receptor

ICSs:

inhaled corticosteroids

IP:

intraperitoneal

IT:

intratracheal

IV:

intravenous

logP:

log octanol-water partition coefficient

NB:

non-specific binding

PK/PD:

pharmacokinetic and pharmacodynamic

PMSF:

phenylmethylsulphonyl fluoride

P-gp:

P-glycoprotein

RBA:

relative binding affinity

Sol:

solubility in water

TA:

triamcinolone acetonide

TB:

total binding

References

  1. Drescher SK, Chen M-J, Bulitta JB, Hochhaus G. Pharmacokinetics and pharmacodynamics of drugs delivered to the lung. In: Hickey AJ, da Rocha SR, editors. Pharmaceutical inhalation aerosol technology. 3rd ed: CRC Press; 2019.

  2. Hochhaus G, Möllmann H, Derendorf H, Gonzalez-Rothi RJ. Pharmacokinetic/pharmacodynamic aspects of aerosol therapy using glucocorticoids as a model. J Clin Pharmacol. 1997;37(10):881–92.

    Article  CAS  Google Scholar 

  3. Beato M, Kalimi M, Feigelson P. Correlation between glucocorticoid binding to specific liver cytosol receptors and enzyme induction in vivo. Biochem Biophys Res Commun. 1972;47(6):1464–72.

    Article  CAS  Google Scholar 

  4. Hochhaus G, Gonzalez-Rothi RJ, Lukyanov A, Derendorf H, Schreier H, Dalla CT. Assessment of glucocorticoid lung targeting by ex-vivo receptor binding studies in rats. Pharm Res. 1995;12(1):134–7.

    Article  CAS  Google Scholar 

  5. Arya V, Issar M, Wang Y, Talton JD, Hochhaus G. Brain permeability of inhaled corticosteroids. J Pharm Pharmacol. 2005;57(9):1159–67.

    Article  CAS  Google Scholar 

  6. Mager H, Göller G. Resampling methods in sparse sampling situations in preclinical pharmacokinetic studies. J Pharm Sci. 1998;87(3):372–8.

    Article  CAS  Google Scholar 

  7. Bi Y, Deng J, Murry DJ, An G. A whole-body physiologically based pharmacokinetic model of Gefitinib in mice and scale-up to humans. AAPS J. 2016;18(1):228–38.

    Article  CAS  Google Scholar 

  8. Choy YB, Prausnitz MR. The rule of five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal. Pharm Res. 2011;28(5):943–8.

    Article  CAS  Google Scholar 

  9. Winkler J, Hochhaus G, Derendorf H. How the lung handles drugs. Proc Am Thorac Soc. 2004;1(4):356–63.

    Article  CAS  Google Scholar 

  10. Rohdewald P, Moellmann H, Mueller KM, Hochhaus G. Glucocorticoid receptors in the respiration tract. Bochumer Treff. 1984:223–42.

  11. Stoeck M, Riedel R, Hochhaus G, Häfner D, Masso JM, Schmidt B, et al. In vitro and in vivo anti-inflammatory activity of the new glucocorticoid ciclesonide. J Pharmacol Exp Ther. 2004;309(1):249–58.

    Article  CAS  Google Scholar 

  12. Issar M, Sahasranaman S, Buchwald P, Hochhaus G. Differences in the glucocorticoid to progesterone receptor selectivity of inhaled glucocorticoids. Eur Respir J. 2006 Mar;27(3):511–6.

    Article  CAS  Google Scholar 

  13. Sakagami M, Kinoshita W, Sakon K, Sato J, Makino Y. Mucoadhesive beclomethasone microspheres for powder inhalation: their pharmacokinetics and pharmacodynamics evaluation. J Control Release Off J Control Release Soc. 2002;80(1–3):207–18.

    Article  CAS  Google Scholar 

  14. Boobis AR. Comparative physicochemical and pharmacokinetic profiles of inhaled beclomethasone dipropionate and budesonide. Respir Med. 1998;92(Suppl B):2–6.

    Article  Google Scholar 

  15. van Amerongen IA, De Ronde HAG, Klooster NTM. Physical-chemical characterization of semisolid topical dosage form using a new dissolution system. Int J Pharm. 1992;86(1):9–15.

    Article  Google Scholar 

  16. Feth MP, Volz J, Hess U, Sturm E, Hummel R-P. Physicochemical, crystallographic, thermal, and spectroscopic behavior of crystalline and X-ray amorphous ciclesonide. J Pharm Sci. 2008;97(9):3765–80.

    Article  CAS  Google Scholar 

  17. Jain N, Yalkowsky SH. Estimation of the aqueous solubility I: application to organic nonelectrolytes. J Pharm Sci. 2001;90(2):234–52.

    Article  CAS  Google Scholar 

  18. Högger P, Rohdewald P. Binding kinetics of fluticasone propionate to the human glucocorticoid receptor. Steroids. 1994;59(10):597–602.

    Article  Google Scholar 

  19. Baumann D, Bachert C, Högger P. Dissolution in nasal fluid, retention and anti-inflammatory activity of fluticasone furoate in human nasal tissue ex vivo. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2009;39(10):1540–50.

    Article  CAS  Google Scholar 

  20. Wang Y. Pharmacokinetic and pharmacodynamic evaluation of beclomethasone dipropionate: University of Florida; 2003.

  21. Talton JD. Pulmonary targeting of inhaled glucocorticoid dry powders: University of Florida; 1999.

  22. Guo Z, Gu Z, Howell SR, Chen K, Rohatagi S, Cai L, et al. Ciclesonide disposition and metabolism: pharmacokinetics, metabolism, and excretion in the mouse, rat, rabbit, and dog. Am J Ther. 2006;13(6):490–501.

    Article  Google Scholar 

  23. Jones RM, Harrison A. A new methodology for predicting human pharmacokinetics for inhaled drugs from oratracheal pharmacokinetic data in rats. Xenobiotica Fate Foreign Compd Biol Syst. 2012;42(1):75–85.

    Article  CAS  Google Scholar 

  24. Rojas C, Nagaraja NV, Webb AI, Derendorf H. Microdialysis of triamcinolone acetonide in rat muscle. J Pharm Sci. 2003;92(2):394–7.

    Article  CAS  Google Scholar 

  25. Martin LE, Harrison C, Tanner RJ. Metabolism of beclomethasone dipropionate by animals and man. Postgrad Med J. 1975;51(Suppl 4):11–20.

    CAS  PubMed  Google Scholar 

  26. Rohatagi S, Luo Y, Shen L, Guo Z, Schemm C, Huang Y, et al. Protein binding and its potential for eliciting minimal systemic side effects with a novel inhaled corticosteroid, ciclesonide. Am J Ther. 2005;12(3):201–9.

    PubMed  Google Scholar 

  27. Wu K, Blomgren AL, Ekholm K, Weber B, Edsbaecker S, Hochhaus G. Budesonide and ciclesonide: effect of tissue binding on pulmonary receptor binding. Drug Metab Dispos Biol Fate Chem. 2009;37(7):1421–6.

    Article  CAS  Google Scholar 

  28. Taylor S, Harker A. Modification of the ultrafiltration technique to overcome solubility and non-specific binding challenges associated with the measurement of plasma protein binding of corticosteroids. J Pharm Biomed Anal. 2006;41(1):299–303.

    Article  CAS  Google Scholar 

  29. Boudinot FD, D’Ambrosio R, Jusko WJ. Receptor-mediated pharmacodynamics of prednisolone in the rat. J Pharmacokinet Biopharm. 1986;14(5):469–93.

    Article  CAS  Google Scholar 

  30. Richards ML, Sadée W. In vivo opiate receptor binding of oripavines to mu, delta and kappa sites in rat brain as determined by an ex vivo labeling method. Eur J Pharmacol. 1985;114(3):343–53.

    Article  CAS  Google Scholar 

  31. Le S, Gruner JA, Mathiasen JR, Marino MJ, Schaffhauser H́. Correlation between ex vivo receptor occupancy and wakepromoting activity of selective H3 receptor antagonists. J Pharmacol Exp Ther 2008;902–909.

  32. Hochhaus G, Rohdewald P, Möllmann H, Greschuchna D. Identification of glucocorticoid receptors in normal and neoplastic adult human lung. Res Exp Med Z Gesamte Exp Med Einschl Exp Chir. 1983;182(1):71–8.

    Article  CAS  Google Scholar 

  33. Ballard PL, Baxter JD, Higgins SJ, Rousseau GG, Tomkins GM. General presence of glucocorticoid receptors in mammalian tissues. Endocrinology. 1974;94(4):998–1002.

    Article  CAS  Google Scholar 

  34. Pujols L, Mullol J, Roca-Ferrer J, Torrego A, Xaubet A, Cidlowski JA, et al. Expression of glucocorticoid receptor α- and β-isoforms in human cells and tissues. Am J Physiol-Cell Physiol. 2002;283(4):C1324–31.

    Article  CAS  Google Scholar 

  35. Boger E, Ewing P, Eriksson UG, Fihn B-M, Chappell M, Evans N, et al. A novel in vivo receptor occupancy methodology for the glucocorticoid receptor: toward an improved understanding of lung pharmacokinetic/pharmacodynamic relationships. J Pharmacol Exp Ther. 2015;353(2):279–87.

    Article  CAS  Google Scholar 

  36. Uller L, Persson CG, Källström L, Erjefält JS. Lung tissue eosinophils may be cleared through luminal entry rather than apoptosis: effects of steroid treatment. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1948–56.

    Article  CAS  Google Scholar 

  37. Rohdewald P, Moelhmann H, Hochhaus G. Affinities of glucocorticoids for glucocorticoid receptors in the human lung. Agents Action. 1985;17:290–1.

    Article  CAS  Google Scholar 

  38. Hochhaus G. New developments in corticosteroids. Proc Am Thorac Soc. 2004;1(3):269–74.

    Article  CAS  Google Scholar 

  39. Derom E, Louis R, Tiesler C, Engelstätter R, Kaufman J-M, Joos GF. Effects of ciclesonide and fluticasone on cortisol secretion in patients with persistent asthma. Eur Respir J. 2009;33(6):1277–86.

    Article  CAS  Google Scholar 

  40. Zaidi S, Chen M-J, Lee DT, Neubart E, Ewing P, Miller-Larsson A, et al. Fetal concentrations of budesonide and fluticasone propionate: a study in mice. AAPS J. 2019;21(4):53.

    Article  Google Scholar 

  41. Arredouani MS, Palecanda A, Koziel H, Huang Y-C, Imrich A, Sulahian TH, et al. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol Baltim Md 1950. 2005;175(9):6058–64.

    CAS  Google Scholar 

  42. Patel VI, Metcalf JP. Airway macrophage and dendritic cell subsets in the resting human lung. Crit Rev Immunol. 2018;38(4):303–31.

    Article  Google Scholar 

  43. Vogel DYS, Heijnen PDAM, Breur M, de Vries HE, Tool ATJ, Amor S, et al. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J Neuroinflammation. 2014;11:23.

    Article  Google Scholar 

  44. Grayson MH, Ramos MS, Rohlfing MM, Kitchens R, Wang HD, Gould A, et al. Controls for lung dendritic cell maturation and migration during respiratory viral infection. J Immunol. 2007;179(3):1438–48.

    Article  CAS  Google Scholar 

  45. Edsbäcker S, Brattsand R. Budesonide fatty-acid esterification: a novel mechanism prolonging binding to airway tissue. Review of available data. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol. 2002;88(6):609–16.

    Article  Google Scholar 

Download references

Funding

Financial support from 3 M, Takeda (formerly Byk-Gulden), GSK and Astra-Zeneca is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Hochhaus.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Figure S1:

% Receptor occupied – time profiles for BDP after systemic (IV) and pulmonary (IT) administration. Receptor occupancy in kidney was used as a reference and displayed in each figure. The mean ± SD is given. (GIF 32 kb)

Figure S2:

% Receptor occupied – time profiles for BMP after systemic (IV) and pulmonary (IT) administration. Receptor occupancy in kidney was used as a reference and displayed in each figure. The mean ± SD is given. (GIF 30 kb)

Figure S3:

% Receptor occupied – time profiles for BUD after systemic (IV) and pulmonary (IT) administration. Receptor occupancy in kidney was used as a reference and displayed in each figure. The mean ± SD is given. (GIF 39 kb)

Figure S4:

% Receptor occupied – time profiles for CIC after systemic (IV) and pulmonary (IT) administration. Receptor occupancy in kidney was used as a reference and displayed in each figure. The mean ± SD is given. (GIF 39 kb)

Figure S5:

% Receptor occupied – time profiles for desCIC after systemic (IV) and pulmonary (IT) administration. Receptor occupancy in kidney was used as a reference and displayed in each figure. The mean ± SD is given. (GIF 39 kb)

Figure S6:

% Receptor occupied – time profiles for TA after systemic (IV) and pulmonary (IT) administration. Receptor occupancy in kidney was used as a reference and displayed in each figure. The mean ± SD is given. (GIF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Talton, J., Wang, Y. et al. Quantitative Assessment of Pulmonary Targeting of Inhaled Corticosteroids Using Ex Vivo Receptor Binding Studies. AAPS J 22, 39 (2020). https://doi.org/10.1208/s12248-019-0404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0404-0

Key Words

Navigation