European Monitoring Centre for Drugs and Drug Addiction. European drug report 2019: trends and developments. Luxembourg: Publications Office of the European Union; 2019.
Google Scholar
Slovenian Police. Analytical report: MDMB-PINACA N1-pentyl-4-en isomer (MDMB-4en-PINACA) (C20H27N3O3). 2019. https://www.policija.si/apps/nfl_response_web/0_Analytical_Reports_final/MDMB-4en-PINACA%20(MDMB-PINACA%20N1-pentyl-4-en%20isomer)-ID-1951-18%20_report.pdf. Accessed 11 July 2019.
Banister SD, Longworth M, Kevin R, Sachdev S, Santiago M, Stuart J, et al. Pharmacology of Valinate and tert-Leucinate synthetic cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues. ACS Chem Neurosci. 2016;7(9):1241–54. https://doi.org/10.1021/acschemneuro.6b00137.
CAS
Article
PubMed
Google Scholar
Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, et al. Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci. 2015;6(9):1546–59. https://doi.org/10.1021/acschemneuro.5b00112.
CAS
Article
PubMed
Google Scholar
Public Health Agency of Sweden. Fjorton nya ämnen klassas som narkotika eller hälsofarlig vara (in Swedish). https://www.folkhalsomyndigheten.se/nyheter-och-press/nyhetsarkiv/2018/november/fjorton-nya-amnen-klassas-som-narkotika-eller-halsofarlig-vara/ (2018). Accessed 11 July 2019.
Yeter O, Ozturk YE. Metabolic profiling of synthetic cannabinoid 5F-ADB by human liver microsome incubations and urine samples using high-resolution mass spectrometry. Drug Test Anal. 2019;11(6):847–58. https://doi.org/10.1002/dta.2566.
CAS
Article
PubMed
Google Scholar
Truver MT, Watanabe S, Åstrand A, Vikingsson S, Green H, Swortwood MJ, et al. 5F-MDMB-PICA metabolite identification and cannabinoid receptor activity. Drug Test Anal. 2019. https://doi.org/10.1002/dta.2688.
Kusano M, Zaitsu K, Taki K, Hisatsune K, Ji N, Moriyasu T, et al. Fatal intoxication by 5F–ADB and diphenidine: detection, quantification, and investigation of their main metabolic pathways in humans by LC/MS/MS and LC/Q-TOFMS. Drug Test Anal. 2018;10(2):284–93. https://doi.org/10.1002/dta.2215.
CAS
Article
PubMed
Google Scholar
Armenian P, Darracq M, Gevorkyan J, Clark S, Kaye B, Brandehoff NP. Intoxication from the novel synthetic cannabinoids AB-PINACA and ADB-PINACA: a case series and review of the literature. Neuropharmacology. 2018;134:82–91. https://doi.org/10.1016/j.neuropharm.2017.10.017.
CAS
Article
PubMed
Google Scholar
Carlier J, Diao X, Scheidweiler KB, Huestis MA. Distinguishing intake of new synthetic cannabinoids ADB-PINACA and 5F-ADB-PINACA with human hepatocyte metabolites and high-resolution mass spectrometry. Clin Chem. 2017;63(5):1008–21. https://doi.org/10.1373/clinchem.2016.267575.
CAS
Article
PubMed
Google Scholar
Watanabe S, Vikingsson S, Roman M, Green H, Kronstrand R, Wohlfarth A. In vitro and in vivo metabolite identification studies for the new synthetic opioids acetylfentanyl, acrylfentanyl, furanylfentanyl, and 4-fluoro-Isobutyrylfentanyl. AAPS J. 2017;19(4):1102–22. https://doi.org/10.1208/s12248-017-0070-z.
CAS
Article
PubMed
Google Scholar
Minakata K, Yamagishi I, Nozawa H, Hasegawa K, Suzuki M, Gonmori K, et al. Sensitive identification and quantitation of parent forms of six synthetic cannabinoids in urine samples of human cadavers by liquid chromatography–tandem mass spectrometry. Forensic Toxicol. 2017;35(2):275–83. https://doi.org/10.1007/s11419-017-0354-0.
CAS
Article
Google Scholar
Åstrand A, Töreskog A, Watanabe S, Kronstrand R, Gréen H, Vikingsson S. Correlations between metabolism and structural elements of the alicyclic fentanyl analogs cyclopropyl fentanyl, cyclobutyl fentanyl, cyclopentyl fentanyl, cyclohexyl fentanyl and 2,2,3,3-tetramethylcyclopropyl fentanyl studied by human hepatocytes and LC-QTOF-MS. Arch Toxicol. 2019;93(1):95–106. https://doi.org/10.1007/s00204-018-2330-9.
CAS
Article
PubMed
Google Scholar
Obach RS. Cytochrome P450-catalyzed metabolism of ezlopitant alkene (CJ-12,458), a pharmacologically active metabolite of ezlopitant: enzyme kinetics and mechanism of an alkene hydration reaction. Drug Metab Dispos. 2001;29(7):1057–67.
CAS
PubMed
Google Scholar
De Costa KS, Black SR, Thomas BF, Burgess JP, Mathews JM. Metabolism and disposition of α-methylstyrene in rats. Drug Metab Dispos. 2001;29(2):166–71.
PubMed
Google Scholar
Mang H, Gross J, Lara M, Goessler C, Schoemaker HE, Guebitz GM, et al. Biocatalytic single-step alkene cleavage from aryl alkenes: an enzymatic equivalent to reductive ozonization. Angew Chem Int Ed. 2006;45(31):5201–3. https://doi.org/10.1002/anie.200601574.
CAS
Article
Google Scholar
Wallgren J, Vikingsson S, Åstrand A, Josefsson M, Gréen H, Dahlén J, et al. Synthesis and identifications of potential metabolites as biomarkers of the synthetic cannabinoid AKB-48. Tetrahedron. 2018;74(24):2905–13. https://doi.org/10.1016/j.tet.2018.04.026.
CAS
Article
Google Scholar
Watanabe S, Kuzhiumparambil U, Fu S. Structural elucidation of metabolites of synthetic cannabinoid UR-144 by Cunninghamella elegans using nuclear magnetic resonance (NMR) spectroscopy. AAPS J. 2018;20(2):42. https://doi.org/10.1208/s12248-018-0209-6.
CAS
Article
PubMed
Google Scholar
Watanabe S, Vikingsson S, Åstrand A, Auwärter V, Gréen H, Kronstrand R. Metabolism of the benzodiazepines norflurazepam, flurazepam, fludiazepam and cinolazepam by human hepatocytes using high-resolution mass spectrometry and distinguishing their intake in authentic urine samples. Forensic Toxicol. 2019. https://doi.org/10.1007/s11419-019-00488-9.
Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol. 2003;189(3):233–46. https://doi.org/10.1016/S0041-008X(03)00128-5.
CAS
Article
PubMed
Google Scholar
Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA. In vitro and in vivo human metabolism of synthetic cannabinoids FDU-PB-22 and FUB-PB-22. AAPS J. 2016;18(2):455–64. https://doi.org/10.1208/s12248-016-9867-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Minakata K, Hasegawa K, Nozawa H, Yamagishi I, Saitoh T, Yoshino A, et al. Sensitive quantification of BB-22 and its metabolite BB-22 3-carboxyindole, and characterization of new metabolites in authentic urine and/or serum specimens obtained from three individuals by LC–QTRAP-MS/MS and high-resolution LC–Orbitrap-MS/MS. Forensic Toxicol. 2019;37(1):164–73. https://doi.org/10.1007/s11419-018-0448-3.
CAS
Article
PubMed
Google Scholar
Diao X, Huestis MA. New synthetic cannabinoids metabolism and strategies to best identify optimal marker metabolites. Front Chem. 2019;7:109. https://doi.org/10.3389/fchem.2019.00109.
CAS
Article
PubMed
PubMed Central
Google Scholar