Skip to main content
Log in

Optimizing Dose-Finding Studies for Drug Combinations Based on Exposure-Response Models

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Combinations of pharmacological treatments are increasingly being investigated for potentially higher clinical benefit, especially when the combined drugs are expected to act via synergistic interactions. The clinical development of combination treatments is particularly challenging, particularly during the dose-selection phase, where a vast range of possible combination doses exists. The purpose of this work was to evaluate the added value of using optimal design for guiding the dose allocation in drug combination dose-finding studies as compared with a typical drug-combination trial. Optimizations were performed using local [D(s)-optimality] and global [ED(s)-optimality] optimal designs to maximize the precision of model parameters in a number of potential exposure-response (E-R) surfaces. A compound criterion [D(s)/V-optimality] was used to optimize the precision of model predictions in specific parts of the E-R surfaces. Optimal designs provided unbiased estimates and significantly improved the accuracy of results relative to the typical design. It was possible to improve the efficiency and overall parameter precision up to 7832% and 96.6% respectively. When the compound criterion was used, the probability to accurately identify the optimal dose-combination increased from 71% for the typical design up to 91%. These results indicate that optimal design methodology in tandem with E-R analyses is a beneficial tool that can be used for appropriate dose allocation in dose-finding studies for drug combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2018;14(1):12–24.

    Article  CAS  PubMed  Google Scholar 

  2. Upadhyay J, Polyzos SA, Perakakis N, Thakkar B, Paschou SA, Katsiki N, et al. Pharmacotherapy of type 2 diabetes: an update. Metabolism. 2018;78:13–42.

    Article  CAS  PubMed  Google Scholar 

  3. Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  4. Zimmermann GR, Lehár J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007;12(1–2):34–42.

    Article  CAS  PubMed  Google Scholar 

  5. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995;47(2):331–85.

    CAS  PubMed  Google Scholar 

  6. Papathanasiou T, Strathe A, Hooker AC, Lund TM, Overgaard RV. Feasibility of exposure-response analyses for clinical dose-ranging studies of drug combinations. AAPS J. 2018;20(3):64.

    Article  PubMed  CAS  Google Scholar 

  7. Nøhr-Nielsen A, De Bruin ML, Thomsen M, Pipper CB, Lange T, Bjerrum OJ, et al. Body of evidence and approaches applied in the clinical development program of fixed-dose combinations in the European Union from 2010-2016. Br J Clin Pharmacol. 2019;85(8):1829–40.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kimko H, Pinheiro J. Model-based clinical drug development in the past, present and future: a commentary. Br J Clin Pharmacol. 2015;79(1):108–16.

    Article  PubMed  Google Scholar 

  9. Musuamba FT, Manolis E, Holford N, Cheung S, Friberg LE, Ogungbenro K, et al. Advanced methods for dose and regimen finding during drug development: summary of the EMA/EFPIA workshop on dose finding (London 4-5 December 2014). CPT Pharmacometrics Syst Pharmacol. 2017;6(7):418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Overgaard RV, Ingwersen SH, Tornøe CW. Establishing good practices for exposure-response analysis of clinical endpoints in drug development. CPT Pharmacometrics Syst Pharmacol. 2015;4(10):565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Papathanasiou T, Juul RV, Gabel-Jensen C, Kreilgaard M, Heegaard AM, Lund TM. Quantification of the pharmacodynamic interaction of morphine and gabapentin using a response surface approach. AAPS J. 2017;19(6):1804–13.

    Article  CAS  PubMed  Google Scholar 

  12. Retout S, Duffull S, Mentré F. Development and implementation of the population fisher information matrix for the evaluation of population pharmacokinetic designs. Comput Methods Prog Biomed. 2001;65(2):141–51.

    Article  CAS  Google Scholar 

  13. Nyberg J, Karlsson MO, Hooker AC. Simultaneous optimal experimental design on dose and sample times. J Pharmacokinet Pharmacodyn. 2009;36(2):125–45.

    Article  CAS  PubMed  Google Scholar 

  14. Nyberg J, Ueckert S, Strömberg EA, Hennig S, Karlsson MO, Hooker AC. PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Prog Biomed. 2012;108(2):789–805.

    Article  Google Scholar 

  15. Miller F, Guilbaud O, Dette H. Optimal designs for estimating the interesting part of a dose-effect curve. J Biopharm Stat. 2007;17(6):1097–115.

    Article  PubMed  Google Scholar 

  16. Atkinson AD, Alexander Tobias, Randall. Optimum experimental designs, with SAS: Oxford University Press; 2007

  17. Dodds MG, Hooker AC, Vicini P. Robust population pharmacokinetic experiment design. J Pharmacokinet Pharmacodyn. 2005;32(1):33–64.

    Article  PubMed  Google Scholar 

  18. Papathanasiou T, Juul RV, Heegaard AM, Kreilgaard M, Lund TM. Co-administration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain. Eur J Pharm Sci. 2016;82:97–105.

    Article  CAS  PubMed  Google Scholar 

  19. Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol. 2013;2:e50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beal S, Sheiner L, Boeckmann A, Bauer R. NONMEM user’s guides. (1989–2009). Ellicott: Icon Dev Solut; 2009.

    Google Scholar 

  21. Kümmel A, Bonate PL, Dingemanse J, Krause A. Confidence and prediction intervals for pharmacometric models. CPT Pharmacometrics Syst Pharmacol. 2018;7(6):360–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kågedal M, Karlsson MO, Hooker AC. Improved precision of exposure-response relationships by optimal dose-selection. Examples from studies of receptor occupancy using PET and dose finding for neuropathic pain treatment. J Pharmacokinet Pharmacodyn. 2015;42(3):211–24.

    Article  PubMed  CAS  Google Scholar 

  23. Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments. 4th Edition ed: Wiley; 2016.

  24. Bretz F, Dette H, Pinheiro JC. Practical considerations for optimal designs in clinical dose finding studies. Stat Med. 2010;29(7–8):731–42.

    Article  PubMed  Google Scholar 

  25. Wicha SG, Chen C, Clewe O, Simonsson USH. A general pharmacodynamic interaction model identifies perpetrators and victims in drug interactions. Nat Commun. 2017;8(1):2129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL. Response surface model for anesthetic drug interactions. Anesthesiology. 2000;92(6):1603–16.

    Article  CAS  PubMed  Google Scholar 

  27. Twarog NR, Stewart E, Hammill CV, Shelat AA. BRAID: a unifying paradigm for the analysis of combined drug action. Sci Rep. 2016;6:25523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pierrillas PB, Fouliard S, Chenel M, Hooker AC, Friberg LF, Karlsson MO. Model-based adaptive optimal design (MBAOD) improves combination dose finding designs: an example in oncology. AAPS J. 2018;20(2):39.

    Article  PubMed  CAS  Google Scholar 

  29. Aoki Y, Röshammar D, Hamrén B, Hooker AC. Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection. J Pharmacokinet Pharmacodyn. 2017;44(6):581–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Novo Nordisk STAR Fellowship Programme and the Innovation Fund Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Papathanasiou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 21 kb)

ESM 2

(DOCX 23 kb)

ESM 3

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papathanasiou, T., Strathe, A., Overgaard, R.V. et al. Optimizing Dose-Finding Studies for Drug Combinations Based on Exposure-Response Models. AAPS J 21, 95 (2019). https://doi.org/10.1208/s12248-019-0365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0365-3

Key Words

Navigation