Skip to main content

Advertisement

Log in

Modeling Combined Anti-Inflammatory Effects of Dexamethasone and Tofacitinib in Arthritic Rats

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Tofacitinib (TOF), a Janus kinase (JAK) inhibitor, which was approved in 2012, has been recommended for the treatment of clinically active rheumatoid arthritis (RA). Dexamethasone (DEX), a potent corticosteroid, is also used in RA therapy but with limited usefulness due to dose- and time-dependent adverse effects. This pilot study examines the single and combined effects of DEX and TOF in order to explore the steroid-sparing potential of TOF. Collagen-induced arthritic (CIA) rats were subcutaneously (SC) dosed with vehicle, 1.5 mg/kg TOF, 5 mg/kg TOF, 0.225 mg/kg DEX, or a combination of 1.5 mg/kg TOF and 0.225 mg/kg DEX. Paw sizes were measured as an index of disease and drug efficacy and dynamically depicted using a logistic function for natural paw growth, a turnover model for disease progression, an indirect response model for inhibitory effects of TOF and DEX and a non-competitive interaction model for the combined effect of DEX and TOF. TOF alone exerted only a slight inhibitory effect on RA paw edema compared to DEX, which reduced edema by 40%. In combination, TOF and DEX had additive effects with an interaction factor of 0.76. Using model simulations, a single SC dose of TOF does not have a visible steroid-sparing potential, although BID oral dosing has such potential. The current study suggests an additive effect of TOF and DEX and simulations indicate that further exploration of TOF and DEX administration timing may produce desirable drug efficacy with lower DEX doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–37.

    Article  CAS  PubMed  Google Scholar 

  2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–38.

    Article  CAS  PubMed  Google Scholar 

  3. Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389(10086):2338–48.

    Article  PubMed  Google Scholar 

  4. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scherholz ML, Schlesinger N. Androulakis IP. Advanced Drug Delivery Reviews: Chronopharmacology of glucocorticoids; 2019.

    Google Scholar 

  6. Cato AC, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signaling pathways. Science’s STKE : Signal Transduction Knowledge Environment. 2002;2002(138):re9.

    Article  Google Scholar 

  7. Scott DL, Stevenson MD. Treating active rheumatoid arthritis with Janus kinase inhibitors. Lancet. 2017;390(10093):431–2.

    Article  PubMed  Google Scholar 

  8. Fleischmann R. Tofacitinib in the treatment of active rheumatoid arthritis in adults. Immunotherapy. 2018;10(1):39–56.

    Article  CAS  PubMed  Google Scholar 

  9. Dowty ME, Jesson MI, Ghosh S, Lee J, Meyer DM, Krishnaswami S, et al. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. J Pharmacol Exp Ther. 2014;348(1):165–73.

    Article  PubMed  Google Scholar 

  10. Milici AJ, Kudlacz EM, Audoly L, Zwillich S, Changelian P. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther. 2008;10(1):R14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. LaBranche TP, Jesson MI, Radi ZA, Storer CE, Guzova JA, Bonar SL, et al. JAK inhibition with tofacitinib suppresses arthritic joint structural damage through decreased RANKL production. Arthritis Rheum. 2012;64(11):3531–42.

    Article  CAS  PubMed  Google Scholar 

  12. Earp JC, Pyszczynski NA, Molano DS, Jusko WJ. Pharmacokinetics of dexamethasone in a rat model of rheumatoid arthritis. Biopharm Drug Dispos. 2008;29(6):366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song D, DuBois DC, Almon RR, Jusko WJ. Modeling sex differences in anti-inflammatory effects of dexamethasone in arthritic rats. Pharm Res. 2018;35(11):203.

    Article  PubMed  Google Scholar 

  14. Kumar V, Dhiman V, Giri KK, Sharma K, Zainuddin M, Mullangi R. Development and validation of a RP-HPLC method for the quantitation of tofacitinib in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr. 2015;29(9):1325–9.

    Article  Google Scholar 

  15. Sharma K, Giri K, Dhiman V, Dixit A, Zainuddin M, Mullangi R. A validated LC-MS/MS assay for simultaneous quantification of methotrexate and tofacitinib in rat plasma: application to a pharmacokinetic study. Biomed Chromatogr. 2015;29(5):722–32.

    Article  CAS  PubMed  Google Scholar 

  16. Dixit A, Mallurwar SR, Sulochana SP, Zainuddin M, Mullangi R. Determination of tofacitinib in mice whole blood on dried blood spots using LC-ESI-MS/MS: application to pharmacokinetic study in mice. Drug Research. 2019;69(06):330–6.

    PubMed  Google Scholar 

  17. Dowty ME, Lin J, Ryder TF, Wang W, Walker GS, Vaz A, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a Janus kinase inhibitor, in humans. Drug Metab Dispos. 2014;42(4):759–73.

    Article  PubMed  Google Scholar 

  18. Krishnaswami S, Boy M, Chow V, Chan G. Safety, tolerability, and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Pharm Drug Dev. 2015;4(2):83–8.

    Article  CAS  Google Scholar 

  19. Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2012;39(6):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kawai R, Mathew D, Tanaka C, Rowland M. Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J Pharmacol Exp Ther. 1998;287(2):457–68.

    CAS  PubMed  Google Scholar 

  22. Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67–86.

    Article  CAS  PubMed  Google Scholar 

  23. Gupta K, Stock T, Wang R, Alvey C, Choo H, Krishnaswami S. A phase 1 study to estimate the absolute bioavailability of tofacitinib (CP-690,550) in healthy subjects. J Clin Pharmacol. 2001;51:1348.

    Google Scholar 

  24. Li X, DuBois DC, Song D, Almon RR, Jusko WJ, Chen X. Modeling combined immunosuppressive and anti-inflammatory effects of dexamethasone and naproxen in rats predicts the steroid-sparing potential of naproxen. Drug Metab Dispos. 2017;45(7):834–45.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21(4):457–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Earp J, Krzyzanski W, Chakraborty A, Zamacona MK, Jusko WJ. Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokinet Pharmacodyn. 2004;31(5):345–80.

    Article  CAS  PubMed  Google Scholar 

  27. D'Argenio D, Schumitzky A, Wang X. Adapt 5 user’s guide: pharmacokinetics/pharmacodynamic systems analysis software. BMSR: University of Southern California; 2009.

    Google Scholar 

  28. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10(2):201–27.

    Article  CAS  PubMed  Google Scholar 

  29. Tang H, Mayersohn M. A novel model for prediction of human drug clearance by allometric scaling. Drug Metab Dispos. 2005;33(9):1297–303.

    Article  CAS  PubMed  Google Scholar 

  30. Losel R, Wehling M. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol. 2003;4(1):46–56.

    Article  PubMed  Google Scholar 

  31. Suzuki M, Tse S, Hirai M, Kurebayashi Y. Application of physiologically-based pharmacokinetic modeling for the prediction of tofacitinib exposure in japanese. Kobe J Med Sci. 2017;62(6):E150–E61.

    PubMed  PubMed Central  Google Scholar 

  32. Ma G, Xie R, Strober B, Langley R, Ito K, Krishnaswami S, et al. Pharmacokinetic characteristics of tofacitinib in adult patients with moderate to severe chronic plaque psoriasis. Clin Pharm Drug Dev. 2018;7(6):587–96.

    Article  CAS  Google Scholar 

  33. Wang X, Krishnaswami S, Tse S, Lin J, Dowty M, Menon S, et al. Inflammation and cytochrome P450 mediated metabolism of tofacitinib. ASCPT Annual Meeting. 2016.

  34. English J, Chakraborty J, Marks V. The metabolism of dexamethasone in the rat--effect of phenytoin. J Steroid Biochem. 1975;6(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  35. Tomlinson ES, Lewis DF, Maggs JL, Kroemer HK, Park BK, Back DJ. In vitro metabolism of dexamethasone (DEX) in human liver and kidney: the involvement of CYP3A4 and CYP17 (17,20 LYASE) and molecular modelling studies. Biochem Pharmacol. 1997;54(5):605–11.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta P, Alvey C, Wang R, Dowty ME, Fahmi OA, Walsky RL, et al. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: confirmation of in vitro data. Br J Clin Pharmacol. 2012;74(1):109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pascussi JM, Drocourt L, Fabre JM, Maurel P, Vilarem MJ. Dexamethasone induces pregnane X receptor and retinoid X receptor-alpha expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol. 2000;58(2):361–72.

    Article  CAS  PubMed  Google Scholar 

  38. Teo YL, Saetaew M, Chanthawong S, Yap YS, Chan EC, Ho HK, et al. Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence. Breast Cancer Res Treat. 2012;133(2):703–11.

    Article  CAS  PubMed  Google Scholar 

  39. Lamba M, Hutmacher MM, Furst DE, Dikranian A, Dowty ME, Conrado D, et al. Model-informed development and registration of a once-daily regimen of extended-release tofacitinib. Clin Pharmacol Ther. 2017;101(6):745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fleischmann R, Kremer J, Tanaka Y, Gruben D, Kanik K, Koncz T, et al. Efficacy and safety of tofacitinib in patients with active rheumatoid arthritis: review of key phase 2 studies. Int J Rheum Dis. 2016;19(12):1216–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fleischmann R, Mysler E, Hall S, Kivitz AJ, Moots RJ, Luo Z, et al. Investigators OS. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet. 2017;390(10093):457–68.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by NIH Grants GM24211 and GM131800. The China Scholarship Council provided the financial support for Ruihong Yu to pursue research at the State University of New York at Buffalo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R., Song, D., DuBois, D.C. et al. Modeling Combined Anti-Inflammatory Effects of Dexamethasone and Tofacitinib in Arthritic Rats. AAPS J 21, 93 (2019). https://doi.org/10.1208/s12248-019-0362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0362-6

KEY WORDS

Navigation