Skip to main content

Advertisement

Log in

Determination of IL-23 Pharmacokinetics by Highly Sensitive Accelerator Mass Spectrometry and Subsequent Modeling to Project IL-23 Suppression in Psoriasis Patients Treated with Anti-IL-23 Antibodies

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The pro-inflammatory cytokine interleukin (IL)-23 is a key modulator of the immune response, making it an attractive target for the treatment of autoimmune disease. Correspondingly, several monoclonal antibodies against IL-23 are either in development or approved for autoimmune indications such as psoriasis. Despite being a clinical validated target, IL-23 pharmacokinetics (e.g., IL-23 synthesis and elimination rates) and the degree of target suppression (i.e., decrease in free “active” IL-23) associated with clinical efficacy are not well understood, primarily due to its ultra-low circulating levels and the lack of sensitive and accurate measurement methods. In the current work, this issue was overcome by using accelerator mass spectrometry (AMS) to measure the concentration and pharmacokinetics of human recombinant [14C]-IL-23 following an intravenous trace-dose in cynomolgus monkeys. IL-23 pharmacokinetic parameters along with clinical drug exposure and IL-23 binding affinities from four different anti-IL-23 antibodies (ustekinumab, tildrakizumab, guselkumab, and risankizumab) were used to build a pharmacokinetics/pharmacodynamics (PK/PD) model to assess the time course of free IL-23 over one year in psoriasis patients following different dosing regimens. The predicted rank order of reduction of free IL-23 was consistent with their reported rank order of Psoriasis Area and Severity Index (PASI) 100 scores in clinical efficacy trials (ustekinumab < tildrakizumab < guselkumab < risankizumab), thus demonstrating the utility of highly sensitive AMS for determining target pharmacokinetics to inform PK/PD modeling and assessing target suppression associated with clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Szollosi DE, et al. Current and novel anti-inflammatory drug targets for inhibition of cytokines and leucocyte recruitment in rheumatic diseases. J Pharm Pharmacol. 2017.

  2. Mizuma A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol. 2017;8:467.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krebs CF, Schmidt T, Riedel JH, Panzer U. T helper type 17 cells in immune-mediated glomerular disease. Nat Rev Nephrol. 2017;13(10):647–59.

    Article  CAS  PubMed  Google Scholar 

  4. Yago T, et al. IL-23 and Th17 disease in inflammatory arthritis. J Clin Med. 2017;6:9.

    Article  Google Scholar 

  5. Sadeghi M, et al. IL-23 plasma level is strongly associated with CMV status and reactivation of CMV in renal transplant recipients. BMC Immunol. 2016;17(1):35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wang XY, Chen XY, Li J, Zhang HY, Liu J, Sun LD. MiR-200a expression in CD4+ T cells correlates with the expression of Th17/Treg cells and relevant cytokines in psoriasis vulgaris: a case control study. Biomed Pharmacother. 2017;93:1158–64.

    Article  CAS  PubMed  Google Scholar 

  7. Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, et al. Bioanalytical approaches to quantify "total" and "free" therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang W, Wang X, Doddareddy R, Fink D, McIntosh T, Davis HM, et al. Mechanistic pharmacokinetic/target engagement/pharmacodynamic (PK/TE/PD) modeling in deciphering interplay between a monoclonal antibody and its soluble target in cynomolgus monkeys. AAPS J. 2014;16(1):129–39.

    Article  CAS  PubMed  Google Scholar 

  9. Hu L, Hansen RJ. Issues, challenges, and opportunities in model-based drug development for monoclonal antibodies. J Pharm Sci. 2013;102(9):2898–908.

    Article  CAS  PubMed  Google Scholar 

  10. Huhn RD, et al. Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin-10 in healthy volunteers. Blood. 1996;87(2):699–705.

    CAS  PubMed  Google Scholar 

  11. Davis ID, Skrumsager BK, Cebon J, Nicholaou T, Barlow JW, Moller NPH, et al. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin Cancer Res. 2007;13(12):3630–6.

    Article  CAS  PubMed  Google Scholar 

  12. Konrad MW, Hemstreet G, Hersh EM, Mansell PW, Mertelsmann R, Kolitz JE, et al. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Res. 1990;50(7):2009–17.

    CAS  PubMed  Google Scholar 

  13. Atkins MB, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res. 1997;3(3):409–17.

    CAS  PubMed  Google Scholar 

  14. Creaven PJ, et al. Phase I clinical trial of recombinant human tumor necrosis factor. Cancer Chemother Pharmacol. 1987;20(2):137–44.

    CAS  PubMed  Google Scholar 

  15. Gamm H, Lindemann A, Mertelsmann R, Herrmann F. Phase I trial of recombinant human tumour necrosis factor alpha in patients with advanced malignancy. Eur J Cancer. 1991;27(7):856–63.

    Article  CAS  PubMed  Google Scholar 

  16. Castell JV, et al. Plasma clearance, organ distribution and target cells of interleukin-6/hepatocyte-stimulating factor in the rat. Eur J Biochem. 1988;177(2):357–61.

    Article  CAS  PubMed  Google Scholar 

  17. Kudo S, et al. Clearance and tissue distribution of recombinant human interleukin 1 beta in rats. Cancer Res. 1990;50(18):5751–5.

    CAS  PubMed  Google Scholar 

  18. Gibbons JA, Luo ZP, Hannon ER, Braeckman RA, Young JD. Quantitation of the renal clearance of interleukin-2 using nephrectomized and ureter-ligated rats. J Pharmacol Exp Ther. 1995;272(1):119–25.

    CAS  PubMed  Google Scholar 

  19. Vlaming ML, et al. Microdosing of a carbon-14 labeled protein in healthy volunteers accurately predicts its pharmacokinetics at therapeutic dosages. Clin Pharmacol Ther. 2015;98(2):196–204.

    Article  CAS  PubMed  Google Scholar 

  20. Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol. 2005;5(7):521–31.

    Article  CAS  PubMed  Google Scholar 

  21. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.

    Article  CAS  PubMed  Google Scholar 

  22. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168(11):5699–708.

    Article  CAS  PubMed  Google Scholar 

  23. Piskin G, Sylva-Steenland RMR, Bos JD, Teunissen MBM. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol. 2006;176(3):1908–15.

    Article  CAS  PubMed  Google Scholar 

  24. McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 2006;27(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  25. Liu W, Ouyang X, Yang J, Liu J, Li Q, Gu Y, et al. AP-1 activated by toll-like receptors regulates expression of IL-23 p19. J Biol Chem. 2009;284(36):24006–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volpe E, et al. Thymic stromal lymphopoietin links keratinocytes and dendritic cell-derived IL-23 in patients with psoriasis. J Allergy Clin Immunol. 2014;134(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Franks HA, Porte J, el Refaee M, Shah S, Crooks J, et al. Novel approach for interleukin-23 up-regulation in human dendritic cells and the impact on T helper type 17 generation. Immunology. 2011;134(1):60–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441(7090):231–4.

    Article  CAS  PubMed  Google Scholar 

  29. Ivanov II, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    Article  CAS  PubMed  Google Scholar 

  30. El-Behi M, et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol. 2011;12(6):568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011;12(6):560–7.

    Article  CAS  PubMed  Google Scholar 

  32. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frieder J, et al. Anti-IL-23 and anti-IL-17 biologic agents for the treatment of immune-mediated inflammatory conditions. Clin Pharmacol Ther. 2017.

  35. Campa M, Mansouri B, Warren R, Menter A. A review of biologic therapies targeting IL-23 and IL-17 for use in moderate-to-severe plaque psoriasis. Dermatol Ther (Heidelb). 2016;6(1):1–12.

    Article  Google Scholar 

  36. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  CAS  PubMed  Google Scholar 

  37. Dua P, Hawkins E, van der Graaf PH. A tutorial on target-mediated drug disposition (TMDD) models. CPT Pharmacometrics Syst Pharmacol. 2015;4(6):324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soman A, Qiu Y, Chan Li Q. HPLC-UV method development and validation for the determination of low level formaldehyde in a drug substance. J Chromatogr Sci. 2008;46(6):461–5.

    Article  CAS  PubMed  Google Scholar 

  39. Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96.

    Article  CAS  PubMed  Google Scholar 

  40. Tiwari A, Kasaian M, Heatherington AC, Jones HM, Hua F. A mechanistic PK/PD model for two anti-IL13 antibodies explains the difference in total IL-13 accumulation observed in clinical studies. MAbs. 2016;8(5):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lupardus PJ, Garcia KC. The structure of interleukin-23 reveals the molecular basis of p40 subunit sharing with interleukin-12. J Mol Biol. 2008;382(4):931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krueger JG, Ferris LK, Menter A, Wagner F, White A, Visvanathan S, et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2015;136(1):116–124 e7.

    Article  CAS  PubMed  Google Scholar 

  43. Suleiman AA, et al. Population pharmacokinetics of the Interleukin-23 inhibitor risankizumab in subjects with psoriasis and Crohn’s disease: analyses of phase I and II trials. Clin Pharmacokinet. 2018.

  44. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, et al. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2009;49(2):162–75.

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Wei H, Krystek SR Jr, Bond D, Brender TM, Cohen D, et al. Mapping the energetic epitope of an antibody/interleukin-23 interaction with hydrogen/deuterium exchange, fast photochemical oxidation of proteins mass spectrometry, and alanine shave mutagenesis. Anal Chem. 2017;89(4):2250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhuang Y, Calderon C, Marciniak SJ, Bouman-Thio E, Szapary P, Yang TY, et al. First-in-human study to assess guselkumab (anti-IL-23 mAb) pharmacokinetics/safety in healthy subjects and patients with moderate-to-severe psoriasis. Eur J Clin Pharmacol. 2016;72(11):1303–10.

    Article  CAS  PubMed  Google Scholar 

  47. Zandvliet A, et al. Tildrakizumab, a novel anti-IL-23 monoclonal antibody, is unaffected by ethnic variability in Caucasian, Chinese, and Japanese subjects. Int J Clin Pharmacol Ther. 2015;53(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  48. Kopp T, et al. Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature. 2015;521(7551):222–6.

    Article  CAS  PubMed  Google Scholar 

  49. Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs. 2011;3(1):61–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zaky DS, El-Nahrery EM. Role of interleukin-23 as a biomarker in rheumatoid arthritis patients and its correlation with disease activity. Int Immunopharmacol. 2016;31:105–8.

    Article  CAS  PubMed  Google Scholar 

  51. Brito-Luna MJ, Villanueva-Quintero DG, Sandoval-Talamantes AK, Fafutis-Morris M, Graciano-Machuca O, Sanchez-Hernandez PE, et al. Correlation of IL-12, IL-22, and IL-23 in patients with psoriasis and metabolic syndrome. Preliminary report. Cytokine. 2016;85:130–6.

    Article  CAS  PubMed  Google Scholar 

  52. Wlodarczyk M, et al. Correlations between skin lesions induced by anti-tumor necrosis factor-alpha and selected cytokines in Crohn’s disease patients. World J Gastroenterol. 2014;20(22):7019–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rich P, Bourcier M, Sofen H, Fakharzadeh S, Wasfi Y, Wang Y, et al. Ustekinumab improves nail disease in patients with moderate-to-severe psoriasis: results from PHOENIX 1. Br J Dermatol. 2014;170(2):398–407.

    Article  CAS  PubMed  Google Scholar 

  54. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–74.

    Article  CAS  PubMed  Google Scholar 

  55. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84.

    Article  CAS  PubMed  Google Scholar 

  56. Reich K, Papp KA, Blauvelt A, Tyring SK, Sinclair R, Thaçi D, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390(10091):276–88.

    Article  CAS  PubMed  Google Scholar 

  57. Blauvelt A, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol. 2017;76(3):405–17.

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Jiang X, Doddareddy R, Geist B, McIntosh T, Jusko WJ, et al. Development and translational application of a minimal physiologically based pharmacokinetic model for a monoclonal antibody against interleukin 23 (IL-23) in IL-23-induced psoriasis-like mice. J Pharmacol Exp Ther. 2018;365(1):140–55.

    Article  CAS  PubMed  Google Scholar 

  59. Gibiansky L, Gibiansky E. Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacokinetic-pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol. 2009;5(7):803–12.

    Article  CAS  PubMed  Google Scholar 

  60. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35(5):573–91.

    Article  CAS  PubMed  Google Scholar 

  61. Davda JP, Hansen RJ. Properties of a general PK/PD model of antibody-ligand interactions for therapeutic antibodies that bind to soluble endogenous targets. MAbs. 2010;2(5):576–88.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Agoram BM, Martin SW, van der Graaf PH. The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov Today. 2007;12(23–24):1018–24.

    Article  CAS  PubMed  Google Scholar 

  63. Aston PJ, Derks G, Raji A, Agoram BM, van der Graaf PH. Mathematical analysis of the pharmacokinetic-pharmacodynamic (PKPD) behaviour of monoclonal antibodies: predicting in vivo potency. J Theor Biol. 2011;281(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  64. Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351(20):2069–79.

    Article  CAS  PubMed  Google Scholar 

  65. Sofen H, Smith S, Matheson RT, Leonardi CL, Calderon C, Brodmerkel C, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032–40.

    Article  CAS  PubMed  Google Scholar 

  66. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199(1):125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Toichi E, Torres G, McCormick TS, Chang T, Mascelli MA, Kauffman CL, et al. An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. J Immunol. 2006;177(7):4917–26.

    Article  CAS  PubMed  Google Scholar 

  68. Torres T. Selective Interleukin-23 p19 inhibition: another game changer in psoriasis? Focus on risankizumab. Drugs. 2017;77(14):1493–503.

    Article  CAS  PubMed  Google Scholar 

  69. Ogawa K, Matsumoto T, Esaki M, Torisu T, Iida M. Profiles of circulating cytokines in patients with Crohn’s disease under maintenance therapy with infliximab. J Crohns Colitis. 2012;6(5):529–35.

    Article  PubMed  Google Scholar 

  70. Shah DK, Betts AM. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs. 2013;5(2):297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gordon KB, Strober B, Lebwohl M, Augustin M, Blauvelt A, Poulin Y, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet. 2018;392(10148):650–61.

    Article  CAS  PubMed  Google Scholar 

  72. Langley RG, Tsai TF, Flavin S, Song M, Randazzo B, Wasfi Y, et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: results of the randomized, double-blind, phase III NAVIGATE trial. Br J Dermatol. 2018;178(1):114–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Xceleron for the AMS measurements and helpful discussions. The authors wish to thank Jeff Barbon and Meha Chhaya from AbbVie Bioresearch Center (ABC) for providing the HeLa bioassay and guidance on study design, Yu Tian and Kim Youngjae from ABC for bioanalytical support, Yuni Fang and Vivian V. Zhao from AbbVie Redwood City for providing the IL-23 level in monkeys and healthy volunteers, and Colin J. Phipps from AbbVie for the review of modeling and helpful discussions. Finally, we gratefully acknowledge Candace Graff and Melanie C. Ruzek for their critical review of the manuscript.

Funding

AbbVie provided funding for AMS analysis by the contract lab Xceleron (Pharmaron).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cory Kalvass.

Ethics declarations

Conflict of Interest

Junli Ma, Timothy Montavon, Susan E. Lacy, Gary J. Jenkins, Stella Doktor, and J. Cory Kalvass are employees of AbbVie. Kenneth R. Durbin is a former AbbVie employee and is now an employee of Proteinaceous Inc., and has no other conflict of interest to disclose. Ting-Ting Zhang is a former AbbVie employee and is now an employee of Takeda Pharmaceuticals International Co., and has no other conflict of interest to disclose. All authors may own AbbVie stock. AbbVie sponsored and funded the study; contributed to the design; participated in the collection, analysis, and interpretation of data, and in writing, reviewing, and approval of the final publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TT., Ma, J., Durbin, K.R. et al. Determination of IL-23 Pharmacokinetics by Highly Sensitive Accelerator Mass Spectrometry and Subsequent Modeling to Project IL-23 Suppression in Psoriasis Patients Treated with Anti-IL-23 Antibodies. AAPS J 21, 82 (2019). https://doi.org/10.1208/s12248-019-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0352-8

KEY WORDS

Navigation