Skip to main content

Advertisement

Log in

Fetal Concentrations of Budesonide and Fluticasone Propionate: a Study in Mice

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The study goal was to evaluate the transplacental transfer of two corticosteroids, budesonide (BUD) and fluticasone propionate (FP), in pregnant mice and investigate whether P-glycoprotein (P-gp) might be involved in reducing BUD transplacental transfer. Pregnant mice (N = 18) received intravenously either low (104.9 μg/kg) or high (1049 μg/kg) dose of [3H]-BUD or a high dose of [3H]-FP (1590 μg/kg). In a separate experiment, pregnant mice (N = 12) received subcutaneously either the P-gp inhibitor zosuquidar (20 mg/kg) or vehicle, followed by an intravenous infusion of [3H]-BUD (104.9 μg/kg). Total and free (protein unbound) corticosteroid concentrations were determined in plasma, brain, fetus, placenta, kidney, and liver. The ratios of free BUD concentrations in fetus versus plasma K(fetus, plasma, u, u) 0.42 ± 0.17 (mean ± SD) for low-dose and 0.38 ± 0.18 for high-dose BUD were significantly different from K = 1 (P < 0.05), contrary to 0.87 ± 0.25 for FP, which was moreover significantly higher than that for matching high-dose BUD (P < 0.01). The BUD brain/plasma ratio was also significantly smaller than K = 1, while these ratios for other tissues were close to 1. In the presence of the P-gp inhibitor, K(fetus, plasma, u, u) for BUD (0.59 ± 0.16) was significantly increased over vehicle treatment (0.31 ± 0.10; P < 0.01). This is the first in vivo study demonstrating that transplacental transfer of BUD is significantly lower than FP’s transfer and that placental P-gp may be involved in reducing the fetal exposure to BUD. The study provides a mechanistic rationale for BUD’s use in pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BCRP:

Breast cancer resistance protein

BUD:

Budesonide

CL:

Clearance

GBq:

Giga becquerel

FP:

Fluticasone propionate

f u :

Free, protein unbound fraction of drug in plasma or tissue

HPLC:

High-performance liquid chromatography

ICS:

Inhaled corticosteroid

K (tissue, plasma, u, u) :

Free (protein unbound) drug concentration ratio of tissue to maternal blood plasma

K 0 :

Infusion rate

MRP:

Multidrug resistance protein

P-gp:

P-glycoprotein

USP:

US Pharmacopeia

Vdss :

Volume of distribution at steady state

v :

Volume

w :

Weight

References

  1. Breton MC, Martel MJ, Vilain A, Blais L. Inhaled corticosteroids during pregnancy: a review of methodologic issues. Respir Med. 2008;102(6):862–75.

    Article  Google Scholar 

  2. Smy L, Chan AC, Bozzo P, Koren G. Is it safe to use inhaled corticosteroids in pregnancy? Can Fam Physician. 2014;60(9):809–12 e433-5.

    PubMed  PubMed Central  Google Scholar 

  3. Norjavaara E, de Verdier MG. Normal pregnancy outcomes in a population-based study including 2,968 pregnant women exposed to budesonide. J Allergy Clin Immunol. 2003;111(4):736–42.

    Article  CAS  Google Scholar 

  4. Namazy J, Schatz M, Long L, Lipkowitz M, Lillie MA, Voss M, et al. Use of inhaled steroids by pregnant asthmatic women does not reduce intrauterine growth. J Allergy Clin Immunol. 2004;113(3):427–32.

    Article  CAS  Google Scholar 

  5. Hodyl NA, Stark MJ, Osei-Kumah A, Bowman M, Gibson P, Clifton VL. Fetal glucocorticoid-regulated pathways are not affected by inhaled corticosteroid use for asthma during pregnancy. Am J Respir Crit Care Med. 2011;183(6):716–22.

    Article  CAS  Google Scholar 

  6. Blaiss MS. Are inhaled corticosteroids safe in pregnancy? Postgrad Med. 2004;116(6):57.

    Article  Google Scholar 

  7. Expert Panel Report 3 (EPR-3). Guidelines for the diagnosis and management of asthma—summary report 2007. J Allergy Clin Immunol. 2007;120(5):S94–138.

    Article  Google Scholar 

  8. Ni Z, Mao Q. ATP-binding cassette efflux transporters in human placenta. Curr Pharm Biotechnol. 2011;12(4):674–85.

    Article  CAS  Google Scholar 

  9. Feghali M, Venkataramanan R, Caritis S. Pharmacokinetics of drugs in pregnancy. Semin Perinatol. 2015;39(7):512–9.

    Article  Google Scholar 

  10. Plonait SL, Nau H. Physicochemical and Structural Properties Regulating Placental Drug Transfer. In: Polin RA, Fox WW, Abman SH, editors. Fetal and Neonatal Physiology. 3rd ed. Philadelphia, Pa: W.B. Saunders Co.; 2004; 197–211.

    Chapter  Google Scholar 

  11. Murphy VE, Fittock RJ, Zarzycki PK, Delahunty MM, Smith R, Clifton VL. Metabolism of synthetic steroids by the human placenta. Placenta. 2007;28(1):39–46.

    Article  CAS  Google Scholar 

  12. Mark PJ, Waddell BJ. P-glycoprotein restricts access of cortisol and dexamethasone to the glucocorticoid receptor in placental BeWo cells. Endocrinology. 2006;147(11):5147–52.

    Article  CAS  Google Scholar 

  13. Crowe A, Tan AM. Oral and inhaled corticosteroids: differences in P-glycoprotein (ABCB1) mediated efflux. Toxicol Appl Pharmacol. 2012;260(3):294–302.

    Article  CAS  Google Scholar 

  14. Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, et al. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992;267(34):24248–52.

    CAS  PubMed  Google Scholar 

  15. Lin JH, Chiba M, Chen IW, Nishime JA, deLuna FA, Yamazaki M, et al. Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 a] and p-glycoprotein induction. Drug Metab Dispos. 1999;27(10):1187–93.

    CAS  PubMed  Google Scholar 

  16. Dilger K, Schwab M, Fromm MF. Identification of budesonide and prednisone as substrates of the intestinal drug efflux pump P-glycoprotein. Inflamm Bowel Dis. 2004;10(5):578–83.

    Article  Google Scholar 

  17. Cooray HC, Shahi S, Cahn AP, van Veen HW, Hladky SB, Barrand MA. Modulation of p-glycoprotein and breast cancer resistance protein by some prescribed corticosteroids. Eur J Pharmacol. 2006;531(1–3):25–33.

    Article  CAS  Google Scholar 

  18. Chung FS, Santiago JS, Jesus MF, Trinidad CV, See MF. Disrupting P-glycoprotein function in clinical settings: what can we learn from the fundamental aspects of this transporter? Am J Cancer Res. 2016;6(8):1583–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shepard RL, Cao J, Starling JJ, Dantzig AH. Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer. 2003;103(1):121–5.

    Article  CAS  Google Scholar 

  20. Mayer U, Wagenaar E, Dorobek B, Beijnen JH, Borst P, Schinkel AH. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest. 1997;100(10):2430–6.

    Article  CAS  Google Scholar 

  21. Hochhaus G, Froehlich P, Hochhaus R, Mollmann A, Derendorf H, Mollmann HW. A selective HPLC/RIA for the determination of budesonide. J Pharm Biomed Anal. 1998;17(8):1235–42.

    Article  CAS  Google Scholar 

  22. Waters NJ, Jones R, Williams G, Sohal B. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J Pharm Sci. 2008;97(10):4586–95.

    Article  CAS  Google Scholar 

  23. Wu K, Blomgren AL, Ekholm K, Weber B, Edsbaecker S, Hochhaus G. Budesonide and ciclesonide: effect of tissue binding on pulmonary receptor binding. Drug Metab Dispos. 2009;37(7):1421–6.

    Article  CAS  Google Scholar 

  24. Andersson P, Appelgren LE, Ryrfeldt A. Tissue distribution and fate of budesonide in the mouse. Acta Pharmacol Toxicol (Copenh). 1986;59(5):392–402.

    Article  CAS  Google Scholar 

  25. Khor SP, Mayersohn M. Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling. Residual tissue blood. I. Theoretical considerations. Drug Metab Dispos. 1991;19(2):478–85.

    CAS  PubMed  Google Scholar 

  26. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    Article  CAS  Google Scholar 

  27. Kwapisz L, Jairath V, Khanna R, Feagan B. Pharmacokinetic drug evaluation of budesonide in the treatment of Crohn’s disease. Expert Opin Drug Metab Toxicol. 2017;13(7):793–801.

    Article  CAS  Google Scholar 

  28. Andersson P, Brattsand R, Dahlstrom K, Edsbacker S. Oral availability of fluticasone propionate. Br J Clin Pharmacol. 1993;36(2):135–6.

    Article  CAS  Google Scholar 

  29. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  Google Scholar 

  30. Daley-Yates PT. Inhaled corticosteroids: potency, dose equivalence and therapeutic index. Br J Clin Pharmacol. 2015;80(3):372–80.

    Article  CAS  Google Scholar 

  31. Zhang H, Wu X, Wang H, Mikheev AM, Mao Q, Unadkat JD. Effect of pregnancy on cytochrome P450 3a and P-glycoprotein expression and activity in the mouse: mechanisms, tissue specificity, and time course. Mol Pharmacol. 2008;74(3):714–23.

    Article  CAS  Google Scholar 

  32. Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol. 1998;12(4):457–63.

    Article  CAS  Google Scholar 

  33. Arya V, Issar M, Wang Y, Talton JD, Hochhaus G. Brain permeability of inhaled corticosteroids. J Pharm Pharmacol. 2005;57(9):1159–67.

    Article  CAS  Google Scholar 

  34. Arya V, Demarco VG, Issar M, Hochhaus G. Contrary to adult, neonatal rats show pronounced brain uptake of corticosteroids. Drug Metab Dispos. 2006;34(6):939–42.

    CAS  PubMed  Google Scholar 

  35. Arya V, Coowanitwong I, Brugos B, Kim WS, Singh R, Hochhaus G. Pulmonary targeting of sustained release formulation of budesonide in neonatal rats. J Drug Target. 2006;14(10):680–6.

    Article  CAS  Google Scholar 

  36. Chen N, Cui D, Wang Q, Wen Z, Finkelman RD, Welty D. In vitro drug-drug interactions of budesonide: inhibition and induction of transporters and cytochrome P450 enzymes. Xenobiotica. 2018;48(6):637–46.

    Article  CAS  Google Scholar 

  37. Karssen AM, Meijer OC, van der Sandt IC, Lucassen PJ, de Lange EC, de Boer AG, et al. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology. 2001;142(6):2686–94.

    Article  CAS  Google Scholar 

  38. Kalabis GM, Kostaki A, Andrews MH, Petropoulos S, Gibb W, Matthews SG. Multidrug resistance phosphoglycoprotein (ABCB1) in the mouse placenta: fetal protection. Biol Reprod. 2005;73(4):591–7.

    Article  CAS  Google Scholar 

  39. Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.

    Article  CAS  Google Scholar 

  40. Szefler SJ. Pharmacodynamics and pharmacokinetics of budesonide: a new nebulized corticosteroid. J Allergy Clin Immunol. 1999;104(4 Pt 2):175–83.

    Article  CAS  Google Scholar 

  41. Gueorguieva I, Rowland M. A comment on the “correction” of tissue-plasma partition coefficients for drug extraction in eliminating organs by Sven Bjorkman. J Pharmacokinet Pharmacodyn. 2005;32(5–6):659–62.

    Article  Google Scholar 

  42. Kalvass JC, Maurer TS, Pollack GM. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos. 2007;35(4):660–6.

    Article  CAS  Google Scholar 

  43. Edwards JE, Brouwer KR, McNamara PJ. GF120918, a P-glycoprotein modulator, increases the concentration of unbound amprenavir in the central nervous system in rats. Antimicrob Agents Chemother. 2002;46(7):2284–6.

    Article  CAS  Google Scholar 

  44. Kodaira H, Kusuhara H, Fuse E, Ushiki J, Sugiyama Y. Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters. Drug Metab Dispos. 2014;42(6):983–9.

    Article  Google Scholar 

  45. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest. 1999;104(10):1441–7.

    Article  CAS  Google Scholar 

  46. Henriksson G, Norlander T, Zheng X, Stierna P, Westrin KM. Expression of P-glycoprotein 170 in nasal mucosa may be increased with topical steroids. Am J Rhinol. 1997;11(4):317–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of AstraZeneca to the University of Florida is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Hochhaus.

Ethics declarations

Conflict of Interest

SZ, M-JC, DTL, and EN have no conflicts of interest to disclose. PE is an employee of AstraZeneca. AM-L was an employee of AstraZeneca at the time of the study. GH has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, S., Chen, MJ., Lee, D.T. et al. Fetal Concentrations of Budesonide and Fluticasone Propionate: a Study in Mice. AAPS J 21, 53 (2019). https://doi.org/10.1208/s12248-019-0313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0313-2

KEY WORDS

Navigation