The AAPS Journal

, 21:41 | Cite as

Effect of Dibasic Calcium Phosphate Incorporation on Cellulose Nanocrystal/Chitosan Hydrogel Properties for the Treatment of Vertebral Compression Fractures

  • Soheila Ali Akbari Ghavimi
  • Ethan S. Lungren
  • Jessica L. Stromsdorfer
  • Blake T. Darkow
  • Julie A. Nguyen
  • Yisheng Sun
  • Ferris M. Pfieffer
  • Christina L. Goldstein
  • Caixia Wan
  • Bret D. UleryEmail author
Research Article


Vertebral compression fractures account for approximately 700,000 out of the 1.5 million total osteoporotic fractures that occur annually in the USA. There is growing interest in substituting currently utilized clinical treatments for vertebral compression fractures with an injectable, degradable, and bioactive system. In this research we studied the osteoinductive effect of calcium phosphate incorporation into cellulose nanocrystal/chitosan hydrogels with varying ratios of carbonate as an ionic crosslinker and genipin as a covalent crosslinker. As calcium and phosphate ions have been shown to be osteoinductive in time and concentration dependent manners, dibasic calcium phosphate was chosen as a bioactive additive due to its desirable controlled ion delivery potential. Gelation time, swelling ratio, erosion, compressive strength, and ion release behavior of different dibasic calcium phosphate incorporated hydrogels were evaluated. Mesenchymal stem cells were then exposed to mechanically competent hydrogels found capable of maintaining calcium and phosphate concentrations within the established bioactive range in order to assess their cytotoxicity and osteoinductivity. Our results demonstrate that hydrogels with higher covalent crosslinking possessed better mechanical properties and stabilities as well as more controlled calcium and phosphate ion release. Interestingly, dibasic calcium phosphate incorporation not only improved hydrogel bioactivity but also resulted in greater compressive strength.


vertebral compression fractures hydrogel chitosan cellulose nanocrystals calcium phosphate 



The authors gratefully acknowledge support from the Coulter Translational Partnership Program at the University of Missouri.

Funding Information

Start-up funds are provided by the University of Missouri.

Supplementary material

12248_2019_311_MOESM1_ESM.docx (43 kb)
ESM 1 (DOCX 42.6 kb)


  1. 1.
    Ensrud KE, Schousboe JT. Vertebral fractures. N Engl J Med. 2011;364(17):1634–42.PubMedGoogle Scholar
  2. 2.
    Wong CC, McGirt MJ. Vertebral compression fractures: a review of current management and multimodal therapy. J Multidiscip Healthc. 2013;6:205.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ferrone ML, Schoenfeld AJ. Osteoporosis, vertebral compression fractures, and cement augmentation procedures. In: Principles of orthopedic practice for primary care providers. Springer; 2018. p. 63–72.Google Scholar
  4. 4.
    McGirt MJ, Parker SL, Wolinsky J-P, Witham TF, Bydon A, Gokaslan ZL. Vertebroplasty and kyphoplasty for the treatment of vertebral compression fractures: an evidenced-based review of the literature. Spine J. 2009;9(6):501–8.PubMedGoogle Scholar
  5. 5.
    De Negri P, Tirri T, Paternoster G, Modano P. Treatment of painful osteoporotic or traumatic vertebral compression fractures by percutaneous vertebral augmentation procedures: a nonrandomized comparison between vertebroplasty and kyphoplasty. Clin J Pain. 2007;23(5):425–30.PubMedGoogle Scholar
  6. 6.
    Hadjipavlou A, Tzermiadianos M, Katonis P, Szpalski M. Percutaneous vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures and osteolytic tumours. Bone Joint J. 2005;87(12):1595–604.Google Scholar
  7. 7.
    Watts N, Harris S, Genant H. Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty. Osteoporos Int. 2001;12(6):429–37.PubMedGoogle Scholar
  8. 8.
    Denaro V, Longo UG, Maffulli N, Denaro L. Vertebroplasty and kyphoplasty. Clin Cases Min Bone Metab. 2009;6(2):125–30.Google Scholar
  9. 9.
    Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev. 2015;55(4):678–705.Google Scholar
  10. 10.
    Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161–84.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, et al. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid). J Mater Chem. 2012;22(42):22467–80.Google Scholar
  13. 13.
    Yang X, Bakaic E, Hoare T, Cranston ED. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules. 2013;14(12):4447–55.PubMedGoogle Scholar
  14. 14.
    Soheila Aliakbari Ghavimi ESL, Faulkner TJ, Josselet MA, Wu Y, Sun Y, Pfeiffer FM, Goldstein CL, Wan C, Ulery BD. Inductive co-crosslinking of cellulose nanocrystals/chitosan hydrogels for treatment of vertebral compression fractures. Submitted. 2018.Google Scholar
  15. 15.
    HPS AK, Saurabh CK, Adnan A, Fazita MN, Syakir M, Davoudpour Y, et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym. 2016;150:216–26.Google Scholar
  16. 16.
    Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34.PubMedGoogle Scholar
  17. 17.
    Moura MJ, Faneca H, Lima MP, Gil MH, Figueiredo MM. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking. Biomacromolecules. 2011;12(9):3275–84.PubMedGoogle Scholar
  18. 18.
    Adekogbe I, Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials. 2005;26(35):7241–50.PubMedGoogle Scholar
  19. 19.
    Mi F-L, Tan Y-C, Liang H-C, Huang R-N, Sung H-W. In vitro evaluation of a chitosan membrane cross-linked with genipin. J Biomater Sci Polym Ed. 2001;12(8):835–50.PubMedGoogle Scholar
  20. 20.
    Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules. 2000;33(11):4291–4.Google Scholar
  21. 21.
    Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99.PubMedGoogle Scholar
  22. 22.
    Liao S, Cui F, Zhang W, Feng Q. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater. 2004;69(2):158–65.PubMedGoogle Scholar
  23. 23.
    Cushnie EK, Ulery BD, Nelson SJ, Deng M, Lo KW, Khan YM, et al. Simple signaling molecules for inductive bone regenerative engineering. 2014.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ghavimi SAA, Allen BN, Stromsdorfer JL, Kramer JS, Li X, Ulery B. Calcium and phosphate ions as simple signaling molecules with versatile osteoinductivity. Biomedical Materials. 2018.Google Scholar
  25. 25.
    Ghavimi SAA, Tata RR, Greenwald AJ, Allen BN, Grant DA, Grant SA, et al. Controlled ion release from novel polyester/ceramic composites enhances osteoinductivity. AAPS J. 2017;1–16.Google Scholar
  26. 26.
    Ducheyne P, Radin S, King L. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res. 1993;27(1):25–34.PubMedGoogle Scholar
  27. 27.
    Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32(1):1–31.Google Scholar
  28. 28.
    Yu H-Y, Zhang D-Z, Lu F-F, Yao J. New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng. 2016;4(5):2632–43.Google Scholar
  29. 29.
    Nair LS, Starnes T, Ko J-WK, Laurencin CT. Development of injectable thermogelling chitosan–inorganic phosphate solutions for biomedical applications. Biomacromolecules. 2007;8(12):3779–85.PubMedGoogle Scholar
  30. 30.
    Schussler S, Uske K, Marwah P, Kemp F, Bogden J, Lin S, et al. Controlled release of vanadium from a composite scaffold stimulates mesenchymal stem cell osteochondrogenesis. AAPS J. 2017;19(4):1017–28.PubMedGoogle Scholar
  31. 31.
    Gao C, Wei D, Yang H, Chen T, Yang L. Nanotechnology for treating osteoporotic vertebral fractures. Int J Nanomedicine. 2015;10:5139.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cao L, Werkmeister JA, Wang J, Glattauer V, McLean KM, Liu C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials. 2014;35(9):2730–42.PubMedGoogle Scholar
  33. 33.
    Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C. 2013;33(8):4786–94.Google Scholar
  34. 34.
    Townsend JM, Dennis SC, Whitlow J, Feng Y, Wang J, Andrews B, et al. Colloidal gels with extracellular matrix particles and growth factors for bone regeneration in critical size rat calvarial defects. AAPS J. 2017;19(3):703–11.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Bourke SL, Al-Khalili M, Briggs T, Michniak BB, Kohn J, Poole-Warren LA. A photo-crosslinked poly (vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications. Aaps Pharmsci. 2003;5(4):101–11.PubMedCentralGoogle Scholar
  36. 36.
    Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22(6):511–21.PubMedGoogle Scholar
  37. 37.
    Weber LM, Lopez CG, Anseth KS. Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J Biomed Mater Res A. 2009;90(3):720–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lawrence PG, Patil PS, Leipzig ND, Lapitsky Y. Ionically cross-linked polymer networks for the multiple-month release of small molecules. ACS Appl Mater Interfaces. 2016;8(7):4323–35.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Maitra J, Shukla VK. Cross-linking in hydrogels-a review. Am J Polymer Sci. 2014;4(2):25–31.Google Scholar
  40. 40.
    Zhu Q, Barney CW, Erk KA. Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Mater Struct. 2015;48(7):2261–76.Google Scholar
  41. 41.
    Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–21.PubMedGoogle Scholar
  42. 42.
    Sampath UTM, Ching YC, Chuah CH, Singh R, Lin P-C. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose. 2017;24(5):2215–28.Google Scholar
  43. 43.
    Moglia RS, Whitely M, Dhavalikar P, Robinson J, Pearce H, Brooks M, et al. Injectable polymerized high internal phase emulsions with rapid in situ curing. Biomacromolecules. 2014;15(8):2870–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kim H-W, Knowles JC, Kim H-E. Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25(7–8):1279–87.PubMedGoogle Scholar
  45. 45.
    Juhasz JA, Best SM, Bonfield W. Preparation of novel bioactive nano-calcium phosphate–hydrogel composites. Sci Technol Adv Mater. 2010;11(1):014103.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Rezwan K, Chen Q, Blaker J, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.PubMedGoogle Scholar
  47. 47.
    Mickiewicz RA, Mayes AM, Knaack D. Polymer–calcium phosphate cement composites for bone substitutes. J Biomed Mater Res. 2002;61(4):581–92.PubMedGoogle Scholar
  48. 48.
    O’Donnell JN, Schumacher GE, Antonucci JM, Skrtic D. Structure-composition-property relationships in polymeric amorphous calcium phosphate-based dental composites. Materials. 2009;2(4):1929–54.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Okay O, Durmaz S. Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. Polymer. 2002;43(4):1215–21.Google Scholar
  50. 50.
    Mehmanparast H, Mac-Thiong J, Petit Y. Compressive properties of a synthetic bone substitute for vertebral cancellous bone. Int J Med Biol Sci. 2012;65:287–90.Google Scholar
  51. 51.
    Cesar R, Leivas TP, Pereira CAM, Boffa RS, Guarniero R, Reiff RBM, et al. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus. Res Biomed Eng. 2017;33(2):91–6.Google Scholar
  52. 52.
    Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62(1):3–11.Google Scholar
  53. 53.
    Hidaka Y, Ito M, Mori K, Yagasaki H, Kafrawy A. Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Mater Res. 1999;46(3):418–23.PubMedGoogle Scholar
  54. 54.
    Sarbon N, Sandanamsamy S, Kamaruzaman S, Ahmad F. Chitosan extracted from mud crab (Scylla olivicea) shells: physicochemical and antioxidant properties. J Food Sci Technol. 2015;52(7):4266–75.PubMedGoogle Scholar
  55. 55.
    Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405–14.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng A. 2011;18(7–8):806–15.Google Scholar
  57. 57.
    Zhang Z, Lai Q, Li Y, Xu C, Tang X, Ci J, et al. Acidic pH environment induces autophagy in osteoblasts. Sci Rep. 2017;7:46161.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang J, Witte F, Xi T, Zheng Y, Yang K, Yang Y, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater. 2015;21:237–49.PubMedGoogle Scholar
  59. 59.
    Schuster SM, Olson MS. The regulation of pyruvate dehydrogenase in isolated beef heart mitochondria. The role of calcium, magnesium, and permeant anions. J Biol Chem. 1974;249(22):7159–65.PubMedGoogle Scholar
  60. 60.
    Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta. 2009;1787(11):1309–16.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Soheila Ali Akbari Ghavimi
    • 1
  • Ethan S. Lungren
    • 1
  • Jessica L. Stromsdorfer
    • 1
  • Blake T. Darkow
    • 1
  • Julie A. Nguyen
    • 1
  • Yisheng Sun
    • 1
  • Ferris M. Pfieffer
    • 1
  • Christina L. Goldstein
    • 2
  • Caixia Wan
    • 1
  • Bret D. Ulery
    • 1
    Email author
  1. 1.Department of Biomedical, Biological, and Chemical EngineeringUniversity of MissouriColumbiaUSA
  2. 2.Department of Orthopedic SurgeryUniversity of MissouriColumbiaUSA

Personalised recommendations