Skip to main content

Advertisement

Log in

A Density-Changing Centrifugation Method for Efficient Separation of Free Drugs from Drug-Loaded Particulate Delivery Systems

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Commonly used separation techniques, such as ultracentrifugation, chromatography, and membrane separation, have inherent drawbacks that limit their usage. Herein, we introduced a new separation method, density-changing centrifugation (DCC), which is based on trisodium citrate (TC) and ultracentrifugation. Paclitaxel-loaded cationic solid lipid nanoparticles (SLNs/PTX) and doxorubicin-loaded PEGylated liposomes (Lipo/Dox) were prepared as model drug delivery particulates. After optimizing TC concentration and centrifugal conditions, DCC showed superior separation efficiency and accuracy over common ultracentrifugation and ultrafiltration methods and displayed comparable or even better separation efficiency compared with size-exclusion chromatography, as demonstrated by the determination of encapsulation efficiency, Tyndall effect, transmittance, and drug recovery. DCC was also proven to minimally impact the size distribution, surface morphology, and thermal properties of the nanoparticles and liposomes, and moreover, it did not affect the determination of drug concentrations. Together, DCC has been demonstrated as a neat and effective method for the separation of free drugs from drug-loaded SLNs and liposomes, which shall be of great benefit for the development of particulate based delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yi X, Lian X, Dong J, Wan Z, Xia C, Song X, et al. Co-delivery of pirarubicin and paclitaxel by human serum albumin nanoparticles to enhance antitumor effect and reduce systemic toxicity in breast cancers. Mol Pharm. 2015;12(11):4085–98.

    Article  CAS  PubMed  Google Scholar 

  2. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rao L, Bu LL, Cai B, Xu JH, Li A, Zhang WF, et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater. 2016;28(18):3460–6.

    Article  CAS  PubMed  Google Scholar 

  4. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol. 2008;3(3):151–7.

    Article  CAS  PubMed  Google Scholar 

  5. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saravana KA, Ramaswamy NM. Chitosan microspheres as potential vaccine delivery systems. Int J Drug Delivery. 2011;3(1):43–50.

    Article  CAS  Google Scholar 

  7. Weiss J, Decker EA, Mcclements DJ, Kristbergsson K, Helgason T, Awad T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys. 2008;3(2):146–54.

    Article  Google Scholar 

  8. Bose RJ, Lee SH, Park H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discov Today. 2016;21(8):1303–12.

    Article  CAS  PubMed  Google Scholar 

  9. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–66.

    Article  CAS  PubMed  Google Scholar 

  10. Lv Y, He H, Qi J, Lu Y, Zhao W, Dong X, et al. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int J Pharm. 2018;547(1–2):395–403.

    Article  CAS  PubMed  Google Scholar 

  11. Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res. 2012;2(4):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laouini A, Koutroumanis KP, Charcosset C, Georgiadou S, Fessi H, Holdich RG, et al. pH-sensitive micelles for targeted drug delivery prepared using a novel membrane contactor method. ACS Appl Mater Interfaces. 2013;5(18):8939–47.

    Article  CAS  PubMed  Google Scholar 

  13. Gao D, Tang S, Tong Q. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery. Int J Nanomedicine. 2012;7:3517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Z, Zhu Y-Y, Li Z-Y, Ning S-Q. Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncol Lett. 2016;12(5):3944–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elizarova IS, Luckham PF. Layer-by-layer encapsulated nano-emulsion of ionic liquid loaded with functional material for extraction of Cd 2+ ions from aqueous solutions. J Colloid Interface Sci. 2017;491:286–93.

    Article  CAS  PubMed  Google Scholar 

  16. Sun X, Tabakman SM, Seo WS, Zhang L, Zhang G, Sherlock S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Ed Eng. 2009;48(5):939–42.

    Article  CAS  Google Scholar 

  17. Qiu P, Mao C. Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles. Adv Mater. 2011;23(42):4880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohnishi N, Tanaka S, Tahara K, Takeuchi H. Characterization of insulin-loaded liposome using column-switching HPLC. Int J Pharm. 2015;479(2):302–5.

    Article  CAS  PubMed  Google Scholar 

  19. Pellequer Y, Ollivon M, Barratt G. Methodology for assaying recombinant interleukin-2 associated with liposomes by combined gel exclusion chromatography and fluorescence. J Chromatogr B. 2003;783(1):151–62.

    Article  CAS  Google Scholar 

  20. Zhang H, Zhang FM, Yan SJ. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles. Int J Nanomedicine. 2012;7:2901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guan P, Lu Y, Qi J, Niu M, Lian R, Wu W. Solidification of liposomes by freeze-drying: the importance of incorporating gelatin as interior support on enhanced physical stability. Int J Pharm. 2015;478(2):655–64.

    Article  CAS  PubMed  Google Scholar 

  22. Akthakul A, Hochbaum AI, Stellacci F, Mayes AM. Size fractionation of metal nanoparticles by membrane filtration. Adv Mater. 2005;17(5):532–5.

    Article  CAS  Google Scholar 

  23. Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–37.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Hirsh DJ, Cabral-Lilly D, Zirkel A, Gruner SM, Janoff AS, et al. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. BBA-Biomembranes. 1998;1415(1):23–40.

    Article  CAS  PubMed  Google Scholar 

  25. Ji P, Yu T, Liu Y, Jiang J, Xu J, Zhao Y, et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des Devel Ther. 2016;10:911–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayer LD, St.-Onge G. Determination of free and liposome-associated doxorubicin and vincristine levels in plasma under equilibrium conditions employing ultrafiltration techniques. Anal Biochem 1995;232:149–157.

    Article  CAS  PubMed  Google Scholar 

  27. Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18(3):159–73.

    Article  CAS  PubMed  Google Scholar 

  28. Gelotte B. Studies on gel filtration : sorption properties of the bed material sephadex. J Chromatogr A. 1960;3(1):330–42.

    Article  CAS  Google Scholar 

  29. Amini-Fazl MS, Mobedi H, Barzin J. Investigation of aqueous stability of taxol in different release media. Drug Dev Ind Pharm. 2014;40(4):519–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the National Natural Science Foundation of China (81690261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Deng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lu Han and Hongyan Zhan are co-first authors.

Electronic Supplementary Material

ESM 1

(DOCX 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhan, H., Sun, X. et al. A Density-Changing Centrifugation Method for Efficient Separation of Free Drugs from Drug-Loaded Particulate Delivery Systems. AAPS J 21, 33 (2019). https://doi.org/10.1208/s12248-019-0306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0306-1

KEY WORDS

Navigation