The AAPS Journal

, 20:63 | Cite as

Investigation of the Mechanism of Therapeutic Protein-Drug Interaction Between Methotrexate and Golimumab, an Anti-TNFα Monoclonal Antibody

  • Weirong Wang
  • Jocelyn Leu
  • Rebecca Watson
  • Zhenhua Xu
  • Honghui Zhou
Research Article


A prominent example of human therapeutic protein-drug interaction (TP-DI) is between methotrexate (MTX) and anti-TNFα mAbs. One plausible mechanism for this TP-DI is through the pharmacodynamic effect of MTX on immunogenicity. However, there is no definitive evidence to substantiate this mechanism, and other competing hypotheses, such as MTX suppressing FcγRI expression thereby affecting mAb PK, have also been proposed. In order to understand this mechanism, a cynomolgus monkey study was conducted using golimumab as a model compound. Golimumab elicited high incidences of immunogenicity in healthy cynomolgus monkeys. Concomitant dosing of MTX delayed the onset and reduced the magnitude of anti-drug antibody (ADA) formation. The impact of MTX on golimumab PK correlated with the ADA status. Prior to ADA formation, MTX has no discernable effect on golimumab PK. Additionally, no alteration in FcγRI expression was observed following MTX treatment. The impact of MTX on golimumab immunogenicity and PK has been observed in patients with rheumatoid arthritis, psoriatic arthritis (PsA), and ankylosing spondylitis. In a representative phase 3 study of golimumab in patients with PsA, patients not receiving concomitant MTX was reported to have ~ 30% lower steady-state trough golimumab levels compared to those who received MTX. However, further analysis showed that PsA patients who were negative for ADA in both treatment groups had comparable trough levels of golimumab. Taken together, our results suggest that the mechanism of TP-DI between MTX and golimumab can mostly be attributed to the pharmacodynamic effect of MTX, i.e., the lowering of immunogenicity and immunogenicity-mediated clearance of mAbs.


golimumab immunogenicity methotrexate pharmacokinetics therapeutic protein-drug interaction (TP-DI) 



We thank Dr. Yang Wang for help with coordination of the monkey study and Drs. Gopi Shankar and Songmao Zheng for helpful scientific discussion and critical review of the manuscript.

Compliance with Ethical Standards

This study was approved by the Institutional Animal Care and Use Committee (IACUC) of WuXi AppTec.


  1. 1.
    Smolen JS, Landewé R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Curtis JR, Singh JA. Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clin Ther. 2011;33(6):679–0.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, MacFarlane JD, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998;41(9):1552–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Krieckaert CL, Nurmohamed MT, Wolbink GJ. Methotrexate reduces immunogenicity in adalimumab treated rheumatoid arthritis patients in a dose dependent manner. Ann Rheum Dis. 2012;71(11):1914–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Van Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9:164–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Emery P, Fleischmann RM, Moreland LW, Hsia EC, Strusberg I, Durez P, et al. Golimumab, a human anti-tumor necrosis factor α monoclonal antibody, injected subcutaneously every four weeks in methotrexate-naïve patients with active rheumatoid arthritis. Arthritis Rheum. 2009;60(8):2272–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 2012 Jun;14(2):296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Smith A, Manoli H, Jaw S, Frutoz K, Epstein AL, Khawli LA, et al. Unraveling the effect of immunogenicity on the PK/PD, efficacy, and safety of therapeutic proteins. J Immunol Res. 2016;2016:2342187.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou H, Sharma A. Therapeutic protein-drug interactions: plausible mechanisms and assessment strategies. Expert Opin Drug Metab Toxicol. 2016;21:1–9.Google Scholar
  10. 10.
    Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, et al. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. JPET. 2005;313(2):578–85.CrossRefGoogle Scholar
  11. 11.
    Richter WF, Gallati H, Schiller CD. Animal pharmacokinetics of the tumor necrosis factor receptor-immunoglobulin fusion protein lenercept and their extrapolation to humans. DMD. 1999;27(1):21–5.Google Scholar
  12. 12.
    Rajagopalan PT, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci U S A. 2002;99(21):13481–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wijngaarden S, van Roon JAG, van de Winkel JGJ, Bijlsma JWJ, Lafeber FPJG. Down-regulation of activating Fcγ receptors on monocytes of patients with rheumatoid arthritis upon methotrexate treatment Rheumatology. 2005;44: 729–34.Google Scholar
  14. 14.
    Shealy DJ, Cai A, Staquet K, Baker A, Lacy ER, Johns L, et al. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α. MAbs. 2010;2:428–39.CrossRefPubMedGoogle Scholar
  15. 15.
    Kavanaugh A, van der Heijde D, McInnes IB, Mease P, Krueger GG, Gladman DD, et al. Golimumab in psoriatic arthritis: one-year clinical efficacy, radiographic, and safety results from a phase III, randomized, placebo-controlled trial. Arthritis Rheum. 2012;64:2504–17.CrossRefPubMedGoogle Scholar
  16. 16.
    Kropshofer H, Richter WF. Immunogenicity: its impact on ADME of therapeutic biologics. In: Zhou H, Thiel FP, editors. ADME and translational pharmacokinetics/pharmacodynamics of therapeutic proteins-applications in drug discovery and development. Hoboken: Wiley; 2015. p. 147–58.Google Scholar
  17. 17.
    Van Meer PJ, Kooijman M, Brinks V, Gispen-de Wied CC, Silva-Lima B, Moors EH, et al. Immunogenicity of mAbs in non-human primates during nonclinical safety assessment. MAbs. 2013;5(5):810–6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin JH. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies. Curr Drug Metab. 2009 Sep;10(7):661–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Prueksaritanont T, Tang C. ADME of biologics-what have we learned from small molecules? AAPS J. 2012;14(3):410–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tibbitts J, Canter D, Graff R, Smith A, Khawli LA. Key factors influencing ADME properties of therapeutic proteins: a need for ADME characterization in drug discovery and development. MAbs. 2016;8(2):229–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Glezen TJ, Mantel-Teeuwisse AK, Straus S, et al. Safety-related regulatory actions for biologicals approved in the United States and the European Union. JAMA. 2008;300(16):1887–96.CrossRefGoogle Scholar
  22. 22.
    Kenny J, Liu M, Chow AT, Earp JC, Evers R, Slatter G, et al. Therapeutic protein drug–drug interactions: navigating the knowledge gaps—highlights from the 2012 AAPS NBC roundtable and IQ consortium/FDA workshop. AAPS J. 2013;15(4):933–40.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhou H, Meibohm B. Drug interactions for therapeutic proteins: a journey just beginning. In: Zhou H, Meibohm B, editors. Drug-drug interactions for therapeutic biologics. Hoboken: Wiley; 2013. p. 1–4.Google Scholar
  24. 24.
    Huang S-M, Zhao H, Lee JI, Reynolds K, Zhang L, Temple R, et al. Therapeutic protein–drug interactions and implications for drug development. Clin Pharmacol Ther. 2010;87:497–503.CrossRefPubMedGoogle Scholar
  25. 25.
    Girish S, Martin SW, Peterson MC, Zhang LK, Zhao H, Balthasar J, et al. AAPS workshop report: strategies to address therapeutic protein-drug interactions during clinical development. AAPS J. 2011;13(3):405–16.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kraynov E, Martin SW, Hurst S, Fahmi OA, Dowty M, Cronenberger C, et al. How current understanding of clearance mechanisms and pharmacodynamics of therapeutic proteins can be applied for evaluation of their drug-drug interaction potential. Drug Metab Dispos. 2011;39(10):1779–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem. 1996;42(8 Pt 2):1322–9.PubMedGoogle Scholar
  28. 28.
    Herskovitz J, Ryman J, Thway T, Lee S, Zhou L, Chirmule N, et al. Immune suppression during preclinical drug development mitigates immunogenicity-mediated impact on therapeutic exposure. AAPS J. 2017;19(2):447–55.CrossRefPubMedGoogle Scholar
  29. 29.
    Thway TM, Magana I, Bautista A, Jawa V, Gu W, Ma M. Impact of anti-drug antibodies in preclinical pharmacokinetic assessment. AAPS J. 2013;15(3):856–63.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sailstad JM, Amaravadi L, Clements-Egan A, Gorovits B, Myler HA, Pillutla RC, et al. A white paper—consensus and recommendations of a global harmonization team on assessing the impact of immunogenicity on pharmacokinetic measurements. AAPS J. 2014;16(3):488–98.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhuang Y, Xu Z, Frederick B, de Vries DE, Ford JA, Keen M, et al. Golimumab pharmacokinetics after repeated subcutaneous and intravenous administrations in patients with rheumatoid arthritis and the effect of concomitant methotrexate: an open-label, randomized study. Clin Ther. 2012;34(1):77–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Ternant D, Mulleman D, Lauferon F, Vignault C, Ducourau E, Wendling D, et al. Influence of methotrexate on infliximab pharmacokinetics and pharmacodynamics in ankylosing spondylitis. Br J Clin Pharmacol. 2012;73:55–65.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mulleman D, Lauféron F, Wendling D, Ternant D, Ducourau E, Paintaud G, et al. Infliximab in ankylosing spondylitis: alone or in combination with methotrexate? A pharmacokinetic comparative study. Arthritis Res Ther. 2011;13(3):R82.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jani M, Barton A, Warren RB, Griffiths CE, Chinoy H. The role of DMARDs in reducing the immunogenicity of TNF inhibitors in chronic inflammatory diseases. Rheumatology (Oxford). 2014;53(2):213–22.CrossRefGoogle Scholar
  35. 35.
    Busard CI, Menting SP, van Bezooijen JS, van den Reek JM, Hutten BA, Prens EP, et al. Optimizing adalimumab treatment in psoriasis with concomitant methotrexate (OPTIMAP): study protocol for a pragmatic, single-blinded, investigator-initiated randomized controlled trial. Trials. 2017;18(1):52.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li J, Schantz A, Schwegler M, Shankar G. Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by Octet® biolayer interferometry. J Pharm Biomed Anal. 2011;54(2):286–94.CrossRefPubMedGoogle Scholar
  37. 37.
    Strauss G, Osen W, Debatin KM. Induction of apoptosis and modulation of activation and effector function in T cells by immunosuppressive drugs. Clin Exp Immunol. 2002;128(2):255–66.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, et al. IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs. 2009;1:572–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nishio S, Yamamoto T, Kaneko K, Tanaka-Matsumoto N, Muraoka S, Kaburaki M, et al. Pharmacokinetic study and Fcgamma receptor gene analysis in two patients with rheumatoid arthritis controlled by low-dose infliximab. Mod Rheumatol. 2009;19:329–33.CrossRefPubMedGoogle Scholar
  40. 40.
    Abuqayyas L, Balthasar JP. Application of knockout mouse models to investigate the influence of FcγR on the tissue distribution and elimination of 8C2, a murine IgG1 monoclonal antibody. Int J Pharm. 2012;439(1–2):8–16.CrossRefPubMedGoogle Scholar
  41. 41.
    Gerards AH, de Lathouder S, de Groot ER, Dijkmans BAC, Aarden LA. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology. 2003;42(10):1189–96.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Weirong Wang
    • 1
  • Jocelyn Leu
    • 2
  • Rebecca Watson
    • 1
  • Zhenhua Xu
    • 2
  • Honghui Zhou
    • 2
  1. 1.Biologics Development SciencesJanssen R&D, LLCSpring HouseUSA
  2. 2.Global Clinical PharmacologyJanssen R&D, LLCSpring HouseUSA

Personalised recommendations