The AAPS Journal

, 20:37 | Cite as

Targeting Inflammatory Vasculature by Extracellular Vesicles

  • Sihan Wang
  • Xinyue Dong
  • Jin Gao
  • Zhenjia Wang
Mini-Review Theme: Therapeutic and Diagnostic Applications of Exosomes and other Extracellular Vesicles
Part of the following topical collections:
  1. Theme: Therapeutic and Diagnostic Applications of Exosomes and other Extracellular Vesicles


Extracellular vesicles (EVs) are cell membrane-derived compartments that regulate physiology and pathology in the body. Naturally secreted EVs have been well studied in their biogenesis and have been exploited in targeted drug delivery. Due to the limitations on production of EVs, nitrogen cavitation has been utilized to efficiently generate EV-like drug delivery systems used in treating inflammatory disorders. In this short review, we will discuss the production and purification of EVs, and we will summarize what technologies are needed to improve their production for translation. We describe the drug-loading processes in EVs and their applications as drug delivery systems for inflammatory therapies, focusing on a new type of EVs made from neutrophil membrane using nitrogen cavitation.


drug delivery extracellular vesicles inflamed endothelium neutrophils 



This work is supported by NIH grant RO1GM116823 to Z. W.


  1. 1.
    Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8(6):2101–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Wang Z, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano. 2009;3(12):4110–6.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov. 2015;14(4):239–47.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Wang Z, Malik AB. Nanoparticles squeezing across the blood-endothelial barrier via caveolae. Ther Deliv. 2013;4(2):131–3.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Wang Z, Tiruppathi C, Cho J, Minshall RD, Malik AB. Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life. 2011;63(8):659–67.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–27.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014;9(3):204–10.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Gao J, Chu D, Wang Z. Cell membrane-formed nanovesicles for disease-targeted delivery. J Control Release. 2016;224:208–16.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Chu D, Gao J, Wang Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano. 2015;9(12):11800–11.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Chu D, Dong X, Zhao Q, Gu J, Wang Z. Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration. Adv Mater 2017.Google Scholar
  13. 13.
    Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9(7):6655–74.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Rosslein M, Liptrott NJ, Owen A, Boisseau P, Wick P, Herrmann IK. Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology. 2017;11(2):147–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):148–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21(R1):R125–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Jan AT. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front Microbiol. 2017;8:1053.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620–30.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78.CrossRefPubMedGoogle Scholar
  20. 20.
    Chaput N, Thery C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33(5):419–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010;74(1):81–94.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999;181(16):4725–33.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Silva AK, Di Corato R, Pellegrino T, Chat S, Pugliese G, Luciani N, et al. Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nano. 2013;5(23):11374–84.Google Scholar
  24. 24.
    Tominaga N, Yoshioka Y, Ochiya T. A novel platform for cancer therapy using extracellular vesicles. Adv Drug Deliv Rev. 2015;95:50–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. 2015;5(8):863–81.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48(10):1647–53.PubMedGoogle Scholar
  28. 28.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Thomsen K, Christophersen L, Bjarnsholt T, Jensen PO, Moser C, Hoiby N. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model. J Cyst Fibros. 2016;15(2):171–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Cvjetkovic A, Lotvall J, Lasser C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 2014;3.Google Scholar
  31. 31.
    Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH, Stout TA, et al. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod. 2012;86(3):82.CrossRefPubMedGoogle Scholar
  32. 32.
    Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3 22.Google Scholar
  33. 33.
    Taylor DD, Chou IN, Black PH. Isolation of plasma membrane fragments from cultured murine melanoma cells. Biochem Biophys Res Commun. 1983;113(2):470–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Oliveira DL, Nakayasu ES, Joffe LS, Guimaraes AJ, Sobreira TJ, Nosanchuk JD, et al. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One. 2010;5(6):e11113.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Joffe LS, Nimrichter L, Rodrigues ML, Del Poeta M. Potential roles of fungal extracellular vesicles during infection. mSphere. 2016;1(4):e00099–16.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Klimentova J, Stulik J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res. 2015;170:1–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Peres da Silva R, Puccia R, Rodrigues ML, Oliveira DL, Joffe LS, Cesar GV, et al. Extracellular vesicle-mediated export of fungal RNA. Sci Rep. 2015;5:7763.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ. 2013;1:e201.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Liga A, Vliegenthart AD, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: a microfluidic road-map. Lab Chip. 2015;15(11):2388–94.CrossRefPubMedGoogle Scholar
  40. 40.
    Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Gao J, Wang S, Wang Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials. 2017;135:62–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T. Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem. 2012;287(2):1397–405.CrossRefPubMedGoogle Scholar
  45. 45.
    Pan QW, Ramakrishnaiah V, Henry S, Fouraschen S, de Ruiter PE, Kwekkeboom J, et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut. 2012;61(9):1330–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors (vol 7, pg 7698, 2013). ACS Nano. 2014;8(1):1073.CrossRefGoogle Scholar
  47. 47.
    Oh K, Kim SR, Kim DK, Seo MW, Lee C, Lee HM, et al. In vivo differentiation of therapeutic insulin-producing cells from bone marrow cells via extracellular vesicle-mimetic nanovesicles. ACS Nano. 2015;9(12):11718–27.CrossRefPubMedGoogle Scholar
  48. 48.
    Saari H, Lazaro-Ibanez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(Pt B):727–37.CrossRefPubMedGoogle Scholar
  49. 49.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Gujrati V, Kim S, Kim SH, Min JJ, Choy HE, Kim SC, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano. 2014;8(2):1525–37.CrossRefPubMedGoogle Scholar
  51. 51.
    Kooijmans SA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJ, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. 2013;172(1):229–38.CrossRefPubMedGoogle Scholar
  52. 52.
    Haney MJ, Klyachko NL, Zhaoa YL, Gupta R, Plotnikova EG, He ZJ, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation: part I. Circulation. 2003;108(16):1917–23.CrossRefPubMedGoogle Scholar
  54. 54.
    Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood. 2015;125(24):3805–14.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710.CrossRefPubMedGoogle Scholar
  57. 57.
    Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater. 2016;15(9):1037–46.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8(1):61–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen X, Wong R, Khalidov I, Wang AY, Leelawattanachai J, Wang Y, et al. Inflamed leukocyte-mimetic nanoparticles for molecular imaging of inflammation. Biomaterials. 2011;32(30):7651–61.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.CrossRefPubMedGoogle Scholar
  61. 61.
    Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140(6):935–50.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Sihan Wang
    • 1
  • Xinyue Dong
    • 1
  • Jin Gao
    • 1
  • Zhenjia Wang
    • 1
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyWashington State UniversitySpokaneUSA

Personalised recommendations