Therapeutic Delivery of Simvastatin Loaded in PLA-PEG Polymersomes Resulted in Amplification of Anti-inflammatory Effects in Activated Microglia

Abstract

Simvastatin (Sim), a lipid-lowering drug has been studied in chronic neuroinflammation associated with degenerative brain disorders due to its potential protective properties against inflammatory reaction, oxidative damage, neuronal dysfunction, and death. Meanwhile, potential application of Sim in neuroinflammation will require a suitable delivery system that can overcome notable challenges pertaining to poor blood–brain barrier (BBB) permeability and side/off-target effects. Herein, we engineered and characterized nano-sized polymersomes loaded with Sim (Sim-Ps) using PEG-PdLLA (methoxy polyethylene glycol-poly(d,l) lactic acid) diblock co-polymers. Studies in BV2 microglia indicated that Sim-Ps was superior to Sim alone in suppressing nitric oxide (NO) and proinflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) secretion against LPS activation. The effectiveness of Sim-Ps as compared with Sim alone, in attenuating NO and cytokine production by activated BV2 cells can be attributed to (a) colloidal stability of the delivery platform, (b) protracted release of biologically active Sim, and (c) particulate internalization coupled with enhanced Sim exposure to BV2 cells. Intranasal delivery in BALB/c mice demonstrated enhanced brain distribution with increasing time after administration. Overall data demonstrated suitability of PEG-PdLLA polymersomes in Sim delivery for potential application in treating neuroinflammation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Churchward MA, Todd KG. Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol Brain. 2014;7(1):85. https://doi.org/10.1186/s13041-014-0085-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94. https://doi.org/10.1038/nn1997.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. https://doi.org/10.1038/nrn2038.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91(2):461–553. https://doi.org/10.1152/physrev.00011.2010.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Vilhardt F. Microglia: phagocyte and glia cell. Int J Biochem Cell Biol. 2005;37(1):17–21. https://doi.org/10.1016/j.biocel.2004.06.010.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Luo XG, Chen SD. The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener. 2012;1(1):9. https://doi.org/10.1186/2047-9158-1-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer’s disease. Acta Neuropathol. 2013;126(4):461–77. https://doi.org/10.1007/s00401-013-1182-x.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol. 2009;89(3):277–87. https://doi.org/10.1016/j.pneurobio.2009.08.001.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Gay F. Activated microglia in primary MS lesions: defenders or aggressors? Int MS J. 2007;14(3):78–83.

    CAS  PubMed  Google Scholar 

  10. 10.

    Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66(11):1638–43. https://doi.org/10.1212/01.wnl.0000222734.56412.17.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Liu B, Hong J-S. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304(1):1–7. https://doi.org/10.1124/jpet.102.035048.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149(8):2736–41.

    CAS  PubMed  Google Scholar 

  13. 13.

    Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci. 2002;22(3):854–62.

    CAS  PubMed  Google Scholar 

  14. 14.

    Perry SW, Dewhurst S, Bellizzi MJ, Gelbard HA. Tumor necrosis factor-alpha in normal and diseased brain: conflicting effects via intraneuronal receptor crosstalk? J Neuro-Oncol. 2002;8(6):611–24. https://doi.org/10.1080/13550280290101021.

    CAS  Google Scholar 

  15. 15.

    Wang WY, Tan MS, JT Y, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Annals of Translational Medicine. 2015;3(10):136. https://doi.org/10.3978/j.issn.2305-5839.2015.03.49.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cai Z, Yan Y, Wang Y. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin Interv Aging. 2013;8:1089–95. https://doi.org/10.2147/CIA.S46536.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Cai ZY, Yan Y, Chen R. Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull. 2010;26(1):28–36. https://doi.org/10.1007/s12264-010-0818-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Shah SZ, Zhao D, Taglialatela G, Khan SH, Hussain T, Dong H, et al. Early minocycline and late FK506 treatment improves survival and alleviates Neuroinflammation, neurodegeneration, and behavioral deficits in prion-infected hamsters. Neurotherapeutics. 2017;14(2):463–83. https://doi.org/10.1007/s13311-016-0500-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Tang J, Chen Q, Guo J, Yang L, Tao Y, Li L, et al. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced Neuroinflammation and brain edema by activating cannabinoid receptor 2. Mol Neurobiol. 2016;53(3):1935–48. https://doi.org/10.1007/s12035-015-9154-x.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Huang D, Zhao Q, Liu H, Guo Y, Xu H. PPAR-alpha agonist WY-14643 inhibits LPS-induced inflammation in synovial fibroblasts via NF-kB pathway. J Mol Neurosci. 2016;59(4):544–53. https://doi.org/10.1007/s12031-016-0775-y.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Zhang YF, Zou XL, Wu J, XQ Y, Yang X. Rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, attenuates inflammation via NF-kappaB inhibition in lipopolysaccharide-induced peritonitis. Inflammation. 2015;38(6):2105–15. https://doi.org/10.1007/s10753-015-0193-2.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kabadi SV, Stoica BA, Byrnes KR, Hanscom M, Loane DJ, Faden AI. Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J Cereb Blood Flow Metab. 2012;32(1):137–49. https://doi.org/10.1038/jcbfm.2011.117.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Schmerwitz UK, Sass G, Khandoga AG, Joore J, Mayer BA, Berberich N, et al. Flavopiridol protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition of cyclin-dependent kinase 9. Arterioscler Thromb Vasc Biol. 2011;31(2):280–8. https://doi.org/10.1161/ATVBAHA.110.213934.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, et al. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery. 2009;65(1):179–185; discussion 85-6. https://doi.org/10.1227/01.neu.0000346272.76537.dc.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wang H, Lynch JR, Song P, Yang HJ, Yates RB, Mace B, et al. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp Neurol. 2007;206(1):59–69. https://doi.org/10.1016/j.expneurol.2007.03.031.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kata D, Foldesi I, Feher LZ, Hackler L, Jr., Puskas LG, Gulya K. Rosuvastatin enhances anti-inflammatory and inhibits pro-inflammatory functions in cultured microglial cells. Neuroscience 2016;314:47–63. doi: https://doi.org/10.1016/j.neuroscience.2015.11.053.

  27. 27.

    Webster KM, Wright DK, Sun M, Semple BD, Ozturk E, Stein DG, et al. Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflammation. 2015;12(1):238. https://doi.org/10.1186/s12974-015-0457-7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    De Nicola AF, Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Guennoun R, et al. Progesterone protective effects in neurodegeneration and neuroinflammation. J Neuroendocrinol. 2013;25(11):1095–103. https://doi.org/10.1111/jne.12043.

    Article  PubMed  Google Scholar 

  29. 29.

    Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg. 2008;109(4):691–8. https://doi.org/10.3171/jns/2008/109/10/0691.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wu H, Mahmood A, Qu C, Xiong Y, Chopp M. Simvastatin attenuates axonal injury after experimental traumatic brain injury and promotes neurite outgrowth of primary cortical neurons. Brain Res. 2012;1486c:121–30. https://doi.org/10.1016/j.brainres.2012.09.039.

    Article  PubMed Central  Google Scholar 

  31. 31.

    Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp Neurol. 2009;216(2):398–406. https://doi.org/10.1016/j.expneurol.2008.12.019.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Sonvico F, Zimetti F, Pohlmann AR, Guterres SS. Drug delivery to the brain: how can nanoencapsulated statins be used in the clinic? Ther Deliv. 2017;8(8):625–31. https://doi.org/10.4155/tde-2017-0044.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Wong WB, Lin VW, Boudreau D, Devine EB. Statins in the prevention of dementia and Alzheimer’s disease: a meta-analysis of observational studies and an assessment of confounding. Pharmacoepidemiol Drug Saf. 2013;22(4):345–58. https://doi.org/10.1002/pds.3381.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE. Simvastatin is associated with a reduced incidence of dementia and Parkinson’ disease. BMC Med. 2007;5(1):20. https://doi.org/10.1186/1741-7015-5-20.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang Q, Yan J, Chen X, Li J, Yang Y, Weng J, et al. Statins: multiple neuroprotective mechanisms in neurodegenerative diseases. Exp Neurol. 2011;230(1):27–34. https://doi.org/10.1016/j.expneurol.2010.04.006.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Undela K, Gudala K, Malla S, Bansal D. Statin use and risk of Parkinson’s disease: a meta-analysis of observational studies. J Neurol. 2013;260(1):158–65. https://doi.org/10.1007/s00415-012-6606-3.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Ciurleo R, Bramanti P, Marino S. Role of statins in the treatment of multiple sclerosis. Pharmacol Res. 2014;87:133–43. https://doi.org/10.1016/j.phrs.2014.03.004.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Murtaza G. Solubility enhancement of simvastatin: a review. Acta Pol Pharm. 2012;69(4):581–90.

    CAS  PubMed  Google Scholar 

  39. 39.

    Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284(5417):1143–6. https://doi.org/10.1126/science.284.5417.1143.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng. 2006;8(1):323–41. https://doi.org/10.1146/annurev.bioeng.8.061505.095838.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Meng F, Engbers GH, Feijen J. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release. 2005;101(1–3):187–98. https://doi.org/10.1016/j.jconrel.2004.09.026.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Meng F, Hiemstra C, Engbers GHM, Feijen J. Biodegradable polymersomes. Macromolecules. 2003;36(9):3004–6. https://doi.org/10.1021/ma034040+.

    CAS  Article  Google Scholar 

  43. 43.

    Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2009;71(3):463–74. https://doi.org/10.1016/j.ejpb.2008.09.025.

    CAS  Article  Google Scholar 

  44. 44.

    Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release. 2012;161(2):473–83. https://doi.org/10.1016/j.jconrel.2011.10.005.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Li S, Byrne B, Welsh J, Palmer AF. Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol Prog. 2007;23(1):278–85. https://doi.org/10.1021/bp060208+.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, et al. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater. 2007;19(23):4238–43. https://doi.org/10.1002/adma.200700941.

    CAS  Article  Google Scholar 

  47. 47.

    Manickavasagam D, Wehrung D, Chamsaz EA, Sanders M, Bouhenni R, Crish SD, et al. Assessment of alkoxylphenacyl-based polycarbonates as a potential platform for controlled delivery of a model anti-glaucoma drug. Eur J Pharm Biopharm. 2016;107:56–66. https://doi.org/10.1016/j.ejpb.2016.06.012.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Wehrung D, Chamsaz EA, Joy A, Oyewumi MO. Formulation and photoirradiation parameters that influenced photoresponsive drug delivery using alkoxylphenacyl-based polycarbonates. Eur J Pharm Biopharm. 2014;88(3):962–72. https://doi.org/10.1016/j.ejpb.2014.07.011.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Wehrung D, Sun S, Chamsaz EA, Joy A, Oyewumi MO. Biocompatibility and in vivo tolerability of a new class of photoresponsive alkoxylphenacyl-based polycarbonates. J Pharm Sci. 2013;102(5):1650–60. https://doi.org/10.1002/jps.23510.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Wehrung D, Geldenhuys WJ, Bi L, Oyewumi MO. Biocompatibility, efficacy and biodistribution of Gelucire-stabilized nanoparticles engineered for docetaxel delivery. J Nanosci Nanotechnol. 2012;12(3):2901–11. https://doi.org/10.1166/jnn.2012.5789.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Lee JS, Feijen J. Biodegradable polymersomes as carriers and release systems for paclitaxel using Oregon green(R) 488 labeled paclitaxel as a model compound. J Control Release. 2012;158(2):312–8. https://doi.org/10.1016/j.jconrel.2011.10.025.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Hossain MM. Coordinated role of voltage-gated sodium channels and the Na(+)/H(+) exchanger in sustaining microglial activation during inflammation. Toxicol Appl Pharmacol 2013;273(2). doi: https://doi.org/10.1016/j.taap.2013.09.011.

  53. 53.

    Bi L, Wehrung D, Oyewumi MO. Contributory roles of innate properties of cetyl alcohol/gelucire nanoparticles to antioxidant and anti-inflammation activities of quercetin. Drug Delivery and Translational Research. 2013;3(4):318–29. https://doi.org/10.1007/s13346-013-0130-6.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Choucair A, Lavigueur C, Eisenberg A. Polystyrene-b-poly(acrylic acid) vesicle size control using solution properties and hydrophilic block length. Langmuir. 2004;20(10):3894–900. https://doi.org/10.1021/la035924p.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Jain JP, Ayen WY, Kumar N. Self assembling polymers as polymersomes for drug delivery. Curr Pharm Des. 2011;17(1):65–79. https://doi.org/10.2174/138161211795049822.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Nahire R, Haldar MK, Paul S, Ambre AH, Meghnani V, Layek B, et al. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials. 2014;35(24):6482–97. https://doi.org/10.1016/j.biomaterials.2014.04.026.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Anajafi T, Mallik S. Polymersome-based drug-delivery strategies for cancer therapeutics. Ther Deliv. 2015;6(4):521–34. https://doi.org/10.4155/tde.14.125.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Blanazs A, Armes SP, Ryan AJ. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun. 2009;30(4–5):267–77. https://doi.org/10.1002/marc.200800713.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release. 2000;63(1–2):19–30. https://doi.org/10.1016/S0168-3659(99)00166-2.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, et al. Bone marrow-derived mesenchymal stem cells modulate BV2 microglia responses to lipopolysaccharide. Int Immunopharmacol. 2010;10(12):1532–40. https://doi.org/10.1016/j.intimp.2010.09.001.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–91. https://doi.org/10.2147/ijn.s36111.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by a grant from the College of Pharmacy, NEOMED priority project fund to MOO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moses O. Oyewumi.

Ethics declarations

Conflict Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manickavasagam, D., Novak, K. & Oyewumi, M.O. Therapeutic Delivery of Simvastatin Loaded in PLA-PEG Polymersomes Resulted in Amplification of Anti-inflammatory Effects in Activated Microglia. AAPS J 20, 18 (2018). https://doi.org/10.1208/s12248-017-0176-3

Download citation

Key Words

  • inflammation
  • microglia
  • neuroprotection
  • polymersomes
  • simvastatin