The AAPS Journal

, 20:12 | Cite as

The Na+/Cl-Coupled, Broad-Specific, Amino Acid Transporter SLC6A14 (ATB0,+): Emerging Roles in Multiple Diseases and Therapeutic Potential for Treatment and Diagnosis

  • Mohd Omar F. Sikder
  • Shengping Yang
  • Vadivel Ganapathy
  • Yangzom D. Bhutia
Review Article Theme: Roles of Transporters in Disease and Drug Therapy
  • 311 Downloads
Part of the following topical collections:
  1. Theme: Roles of Transporters in Disease and Drug Therapy

Abstract

Amino acids are essential building blocks of all mammalian cells, and amino acid transporters play a vital role in transporting them into cells and their further distribution among the various cellular compartments. There are ~ 430 known transporters in the solute-linked carrier (SLC) gene family, divided into 52 distinct families. Eleven of these gene families contain one or more amino acid transporters. These transporters differ significantly from each other in terms of substrate specificity, ion dependence, and energetics. Given the variety of roles they fulfill in human physiology, it is not surprising that a number of diseases are associated with the malfunction of these transporters. In particular, as amino acids are critical for cell growth, survival, and proliferation, the role of amino acid transporters in cancer is gaining increasing attention in recent years. The present review primarily focuses on one particular amino acid transporter, SLC6A14 (also known as ATB0,+), with regard to its relevance to specific diseases, including cancer, and the molecular mechanisms underlying the disease-related alterations in the expression of the transporter. Furthermore, the review highlights the possible utility of this transporter in drug delivery and also its therapeutic potential for the treatment and diagnosis of cancer.

KEY WORDS

cancer colitis cystic fibrosis fertility glutamine addiction microRNAs mTORC1 obesity SLC6A14 

References

  1. 1.
    Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990;70:43–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Christensen HN, Albritton LM, Kakuda DK, MacLeod CL. Gene-product designations for amino acid transporters. J Exp Biol. 1994;196:51–7.PubMedGoogle Scholar
  3. 3.
    Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch. 2004;447:465–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Perland E, Frederiksson R. Classification systems of secondary active transporters. Trends Pharmacol Sci. 2017;38:305–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Colas C, Ung PM, Schlessinger A. SLC transporters: structure, function, and drug discovery. Medchemcomm. 2016;7:1069–81.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev. 2008;88:249–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Broer S, Broer A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J. 2017;474:1935–63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bhutia YD, Ganapathy V. Protein digestion and absorption. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 6th edition, in Press ed: Elsevier; 2017.Google Scholar
  9. 9.
    Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 1863;2016:2531–9.Google Scholar
  10. 10.
    Pochini L, Scalise M, Galluccio M, Indiveri C. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem. 2014;2:61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dang CV. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 2010;70:859–62.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Daye D, Wallen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorogenesis. Semin Cell Dev Biol. 2012;23:362–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Ward PS, Thompson CB. Metabolic reprograming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21:297–308.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15:555–64.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Goberdhan DCI, Wilson C, Harris AL. Amino acid sensing by mTORC1: intracellular transporters mark the spot. Cell Metab. 2016;23:580–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg effect and beyond. Pharmacol Ther. 2009;121:29–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res. 2015;75:1782–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Q, Holst J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res. 2015;5:1281–94.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Elorza A, Soro-Arnaiz I, Melendez-Rodriguez F, Rodriguez-Vaello V, Marsboom G, de Carcer G, et al. HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell. 2012;48:681–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Lo M, Wang YZ, Gout PW. The xc - cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol. 2008;215:593–602.CrossRefPubMedGoogle Scholar
  22. 22.
    Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system xc - in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18:522–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;49:1060–72.CrossRefGoogle Scholar
  24. 24.
    Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumor suppression. Nature. 2015;520:57–62.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Witte D, Ali N, Carlson N, Younes M. Overexpression of the neutral amino acid transporter ASCT2 in human colorectal adenocarcinoma. Anticancer Res. 2002;22:2555–7.PubMedGoogle Scholar
  26. 26.
    Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, et al. ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br J Cancer. 2014;110:2030–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kaira K, Sunose Y, Arakawa K, Sunaga N, Shimizu K, Tominaga H, et al. Clinicopathological significance of ASC amino acid transporter-2 expression in pancreatic ductal carcinoma. Histopathology. 2015;66:234–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Marshall AD, van Geldermalsen M, Otte NJ, Lum T, Vellozi M, Thoeng A, et al. ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogene. 2017;6:e367.CrossRefGoogle Scholar
  29. 29.
    van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 2016;35:3201–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gupta N, Miyauchi S, Martindale RG, Herdman AV, Podolsky R, Miyake K, et al. Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim Biophys Acta. 2005;1741:215–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Gupta N, Prasad PD, Ghamande S, Martin PM, Herdman AV, Martindale RG, et al. Up-regulation of the amino acid transporter ATB0,+ (SLC6A14) in carcinoma of the cervix. Gynecol Oncol. 2006;100:8–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Karunakaran S, Ramachandran S, Coothankandaswamy V, Elangovan S, Babu E, Periyasamy-Thandavan S, et al. SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer. J Biol Chem. 2011;286:31830–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Penheiter AR, Erdogan S, Murphy SJ, Hart SN, Felipe LJ, Rohakhtar FR, et al. Transcriptomic and immunohistochemical profiling of SLC6A14 in pancreatic ductal adenocarcinoma. Biomed Res Int. 2015;2015:593572.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Coothankandaswamy V, Cao S, Xu Y, Prasad PD, Singh PK, Reynolds CP, et al. The amino acid transporter SLC6A14 is a novel and effective drug target for treatment of pancreatic cancer. Br J Pharmacol. 2016;173:3292–306.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Karunakaran S, Umapathy NS, Thangaraju M, Hatanaka T, Itagaki S, Munn DH, et al. Interaction of tryptophan derivatives with SLC6A14 (ATB0,+) reveals the potential of the transporter as a drug target for cancer chemotherapy. Biochem J. 2008;414:343–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Babu E, Bhutia YD, Ramachandran S, Gnanaprakasam JP, Prasad PD, Thangaraju M, et al. Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer. Biochem J. 2015;469:17–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Giannakakis A, Coukos G, Hatzigeorgiou A, Sandaltzopoulos R, Zhang L. miRNA genetic alterations in human cancers. Expert Opin Biol Ther. 2007;7:1375–86.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Gartel AL, Kandel ES. miRNAs: little known mediators of oncogenesis. Semin Cancer Biol. 2008;18:103–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu M, Wang N, Tsao SW, Yuen MF, Feng Y, Wan TS, et al. Up-regulation of microRNAs, miR21 and miR23a, in human liver cancer cells treated with Coptidis rhizome aqueous extract. Exp Ther Med. 2011;2:27–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Li XH, Qu JQ, Yi H, Zhang PF, Yi HM, Wan XX, et al. Integrated analysis of differential miRNA and mRNA expression profiles in human radioresistant and radiosensitive nasopharyngeal carcinoma cells. PLoS One. 2014;9:e87767.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tarlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell. 2016;167:1481–94.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Karlinger K, Gyorke T, Mako E, Mester A, Tarjan Z. The epidemiology and the pathogenesis of inflammatory bowel disease. Eur J Radiol. 2000;35:154–67.CrossRefPubMedGoogle Scholar
  46. 46.
    de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13:13–27.CrossRefPubMedGoogle Scholar
  47. 47.
    Flach CF, Eriksson A, Jennische E, Lange S, Gunnerek C, Lonnroth I. Detection of elafin as a candidate biomarker for ulcerative colitis by whole-genome microarray screening. Inflamm Bowel Dis. 2006;12:837–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Eriksson A, Flach CF, Lindgren A, Kvifors E, Lange S. Five mucosal transcripts of interest in ulcerative colitis identified by quantitative real-time PCR: a prospective study. BMC Gastroenterol. 2008;8:34.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yanai H, Ben-Shachar S, Baram L, Elad H, Gitstein G, Brazowski E, et al. Gene expression alterations in ulcerative colitis patients after restorative proctocolectomy extand to the small bowel proximal to the pouch. Gut. 2015;64:756–64.CrossRefPubMedGoogle Scholar
  50. 50.
    Eriksson A, Jennische E, Flach CF, Jorge A, Lange S. Real-time PCR amplification analysis of five mucosal transcripts in patients with Crohn’s disease. Eur J Gastroenterol Hepatol. 2008;20:290–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, et al. Glutamine and intestinal barrier function. Amino Acids. 2015;47:2143–54.CrossRefPubMedGoogle Scholar
  52. 52.
    Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol. 2015;3:62.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cross RK, Wilson KT. Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9:179–89.CrossRefPubMedGoogle Scholar
  54. 54.
    Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology. 2004;113:427–37.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Suviolahti E, Oksanen LJ, Ohman M, Cantor RM, Ridderstrale M, Tuomi T, et al. The SLC6A14 gene shows evidence of association with obesity. J Clin Invest. 2003;112:1762–72.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Durand E, Boutin P, Meyre D, Charles MA, Clement K, Dina C, et al. Polymorphisms in the amino acid transporter solute carrier family 6 (neurotransmitter transporter) member 14 gene contribute to polygenic obesity in French Caucasians. Diabetes. 2004;53:2483–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Corpeleijn E, Petersen L, Holst C, Saris WH, Astrup A, Langin D, et al. Obesity-related polymorphisms and their associations with the ability to regulate fat oxidation in obese Europeans: the NUGENOB study. Obesity. 2010;18:1369–77.CrossRefPubMedGoogle Scholar
  58. 58.
    Miranda RC, Vetter SB, Genro JP, Campagnolo PD, Mattevi VS, Vitolo MR, et al. SLC6A14 and 5-HTR2C polymorphisms are associated with food intake and nutritional status in children. Clin Biochem. 2015;48:1277–82.CrossRefPubMedGoogle Scholar
  59. 59.
    Ohman M, Oksanen L, Kaprio J, Koskenvuo M, Mustajoki P, Rissanen A, et al. Genome-wide scan of obesity in Finnish sibpairs reveals linkage to chromosome Xq24. J Clin Endocrinol Metab. 2000;85:183–90.Google Scholar
  60. 60.
    Hager J, Dina C, Francke S, Dubois S, Houari M, Vatin V, et al. A genome-wide scan for human obesity genes reveals a major susceptibility on chromosome 10. Nat Genet. 1998;20:304–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Stone S, Abkevich V, Hunt SC, Gutin A, Russell DL, Neff CD, et al. A major predisposition locus for severe obesity at 4p15-p14. Am J Hum Genet. 2002;70:1459–68.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tiwari HK, Allison DB. Do allelic variants of SLC6A14 predispose to obesity? J Clin Invest. 2003;112:1633–6.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sloan JL, Mager S. Cloning and functional expression of a human Na+ and Cl--dependent neutral and cationic amino acid transporter B0,+. J Biol Chem. 1999;274:23740–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Adibi SA, Mercer DW. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J Clin Invest. 1973;52:1586–94.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li W, Soave D, Miller MR, Keenan K, Lin F, Gong J, et al. Unraveling the complex genetic model for cystic fibrosis: pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities. Hum Genet. 2014;133:151–61.CrossRefPubMedGoogle Scholar
  66. 66.
    Sun L, Rommens JM, Corvol H, Li W, Li X, Chiang TA, et al. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet. 2012;44:562–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Corvol H, Blackman SM, Boelle PY, Gallins PJ, Pace RG, Stonebraker JR, et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat Commun. 2015;6:8382.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pereira SV, Ribeiro JD, Bertuzzo CS, Marson FAL. Association of clinical severity of cystic fibrosis with variants in the SLC gene family (SLC6A14, SLC26A9, SLC11A1, and SLC9A3). Gene. 2017;629:117–26.CrossRefPubMedGoogle Scholar
  69. 69.
    Siasi E, Aleyasin A. Four single nucleotide polymorphisms in INSR, SLC6A14, TAS2R38, and OR2W3 genes in association with idiopathic infertility in Persian men. J Reprod Med. 2016;61:145–52.PubMedGoogle Scholar
  70. 70.
    Noveski P, Mircevska M, Plaseski T, Peterlin B, Plaseska-Karanfilska D. Study of three single nucleotide polymorphisms in the SLC6A14 gene in association with male infertility. Balkan J Med Genet. 2014;17:61–6.PubMedGoogle Scholar
  71. 71.
    Tinajero JC, Fabbri A, Ciocca DR, Dufau ML. Serotonin secretion from rat Leydig cells. Endocrinology. 1993;133:3026–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Aragon MA, Ayala ME, Marin M, Aviles A, Damian-Matsumura P, Dominguez R. Serotonergic system blockage in the prepubertal rat inhibits spermatogenesis development. Reproduction. 2005;129:717–27.CrossRefPubMedGoogle Scholar
  73. 73.
    Ganapathy ME, Ganapathy V. Amino acid transporter ATB0,+ as a delivery system for drugs and prodrugs. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5:357–64.CrossRefPubMedGoogle Scholar
  74. 74.
    Bhutia YD, Babu E, Prasad PD, Ganapathy V. The amino acid transporter SLC6A14 in cancer and its potential use in chemotherapy. Asian J Pharm Sci. 2014;9:293–303.CrossRefGoogle Scholar
  75. 75.
    Hatanaka T, Haramura M, Fei YJ, Miyauchi S, Bridges CC, Ganapathy PS, et al. Transport of amino acid-based prodrugs by the Na+- and Cl--coupled amino acid transporter ATB0,+ and expression of the transporter in tissues amenable for drug delivery. J Pharmacol Exp Ther. 2004;308:1138–47.CrossRefPubMedGoogle Scholar
  76. 76.
    Umapathy NS, Ganapathy V, Ganapathy ME. Transport of amino acid esters and the amino-acid-based prodrug valganciclovir by the amino acid transporter ATB0,+. Pharm Res. 2004;21:1303–10.CrossRefPubMedGoogle Scholar
  77. 77.
    Andersson R, Aho U, Nilsson BI, Peters GJ, Pastor-Anglada M, Rasch W, et al. Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scand J Gastroenterol. 2009;44:782–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Bhutia YD, Hung SW, Patel B, Lovin D, Govindarajan R. CNT1 expression influences proliferation and chemosensitivity in drug-resistant pancreatic cancer cells. Cancer Res. 2011;71:1825–35.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hatanaka T, Nakanishi T, Huang W, Leibach FH, Prasad PD, Ganapathy V, et al. Na+- and Cl--coupled active transport of nitric oxide synthase inhibitors via amino acid transport system B0,+. J Clin Invest. 2001;107:1035–43.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nakanishi T, Hatanaka T, Huang W, Prasad PD, Leibach FH, Ganapathy ME, et al. Na+- and Cl--coupled active transport of carnitine by the amino acid transporter ATB0,+ from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol. 2001;532:297–304.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Srinivas SR, Prasad PD, Umapathy NS, Ganapathy V, Shekhawat PS. Transport of butyryl-L-carnitine, a potential prodrug, via the carnitine transporter OCTN2 and the amino acid transporter ATB0,+. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1046–53.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Li L, Di X, Zhang S, Kan Q, Liu H, Lu T, et al. Large amino acid transporter 1 mediated glutamate modified docetaxel-loaded liposomes for glioma targeting. Colloids Surf B Biointerfaces. 2016;141:260–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014;35:518–29.CrossRefPubMedGoogle Scholar
  84. 84.
    Salmaso S, Pappalardo JS, Sawant RR, Musacchio T, Rockwell K, Caliceti P, et al. Targeting glioma cells in vitro with ascorbate-conjugated pharmaceutical nanocarriers. Bioconjug Chem. 2009;20:2348–55.CrossRefPubMedGoogle Scholar
  85. 85.
    Kou L, Yao Q, Sun M, Wu C, Wang J, Luo Q, et al. Cotransporting ion is a trigger for cellular endocytosis of transporter-targeting nanoparticles: a case study of high-efficiency SLC22A5 (OCTN2)-mediated carnitine-conjugated nanoparticles for oral delivery of therapeutic drugs. Adv healthc Mater. 2017;  https://doi.org/10.1002/adhm.201700165.
  86. 86.
    Luo Q, Gong P, Sun M, Kou L, Ganapathy V, Jing Y, et al. Transporter-occluded-state conformation-induced endocytosis: amino acid transporter ATB0,+-mediated tumor targeting of liposomes for docetaxel delivery for hepatocarcinoma therapy. J Control Release. 2016;243:370–80.CrossRefPubMedGoogle Scholar
  87. 87.
    Zhu A, Marcus DM, Shu HK, Shim H. Application of metabolic PET imaging in radiation oncology. Radiat Res. 2012;177:436–48.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112:E4111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Muller A, Chiotellis A, Keller C, Ametamey SM, Schibli R, Mu L, et al. Imaging tumour ATB0,+ transport activity by PET with the cationic amino acid O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine. Mol Imaging Biol. 2014;16:412–20.CrossRefPubMedGoogle Scholar
  90. 90.
    Chiotellis A, Muller A, Weyermann K, Leutwiler DS, Schibli R, Ametamey SM, et al. Synthesis and preliminary biological evaluation of O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([(18F]FEMAET) as a potential cationic amino acid PET tracer for tumor imaging. Amino Acids 2014;46:1947–59.Google Scholar
  91. 91.
    Wongthai P, Hagiwara K, Miyoshi Y, Wiriyasermkul P, Wei L, Ohgaki R, et al. Boronophenylalanine, a boron delivery agents for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015;106:279–86.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.Department of Cell Biology and BiochemistryTexas Tech University Health Sciences CenterLubbockUSA

Personalised recommendations