Skip to main content
Log in

Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters

  • Review Article
  • Theme: Roles of Transporters in Disease and Drug Therapy
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Alternative splicing is an important mechanism of genetic regulation enhancing diversity and complexity of the transcriptome and proteome from the finite number of genes. Many reported cases demonstrate that alternative splicing events can lead to changes in the expression/function of proteins during disease development and progression. For pharmacogenes that can influence drug disposition and response, the role of alternative splicing has begun to receive increasing attention as an under-explored source of variable drug response. Here, we provide an overview of alternative spliced variants reported for the major drug transporters of SLC and ABC families with their possible implications in disease and drug therapy. As more comprehensive analyses on the abundance and functional outcomes of variably spliced isoforms of major drug transporters become available, it will be possible to utilize the obtained knowledge as novel therapeutic targets for tailored treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A. 1977;74(8):3171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell. 1977;12(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert W. Why genes in pieces? Nature. 1978;271(5645):501.

    Article  CAS  PubMed  Google Scholar 

  4. Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A, Yurovsky A, et al. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet. 2015;11(1):e1004958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.

    Article  CAS  PubMed  Google Scholar 

  6. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11(5):345–55.

    Article  CAS  PubMed  Google Scholar 

  8. Gao Q, Sun W, Ballegeer M, Libert C, Chen W. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol Syst Biol. 2015;11(7):816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chen L, Tovar-Corona JM, Urrutia AO. Alternative splicing: a potential source of functional innovation in the eukaryotic genome. Int J Evol Biol. 2012;2012:596274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tress ML, Abascal F, Valencia A. Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 2017;42(2):98–110.

    Article  CAS  PubMed  Google Scholar 

  11. Mockenhaupt S, Makeyev EV. Non-coding functions of alternative pre-mRNA splicing in development. Sem Cell Dev Biol. 2015;47–48:32–9.

    Article  CAS  Google Scholar 

  12. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  13. Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. Biochim Biophys Acta. 2009;1792(1):14–26.

    Article  CAS  PubMed  Google Scholar 

  14. Chhibber A, French CE, Yee SW, Gamazon ER, Theusch E, Qin X, et al. Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines. Pharmacogenomics J. 2017;17(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  15. International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  CAS  Google Scholar 

  16. Turman CM, Hatley JM, Ryder DJ, Ravindranath V, Strobel HW. Alternative splicing within the human cytochrome P450 superfamily with an emphasis on the brain: the convolution continues. Expert Opin Drug Metab Toxicol. 2006;2(3):399–418.

    Article  CAS  PubMed  Google Scholar 

  17. Annalora AJ, Marcus CB, Iversen PL. Alternative splicing in the cytochrome P450 superfamily expands protein diversity to augment gene function and redirect human drug metabolism. Drug Metab Dispos. 2017;45(4):375–89.

    Article  CAS  PubMed  Google Scholar 

  18. Guillemette C, Levesque E, Harvey M, Bellemare J, Menard V. UGT genomic diversity: beyond gene duplication. Drug Metab Rev. 2010;42(1):24–44.

    Article  CAS  PubMed  Google Scholar 

  19. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.

    Article  CAS  PubMed  Google Scholar 

  20. Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensao-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige: the key role of alternative splicing in human biological systems. Hum Genet. 2017;136(9):1015–1042.

  21. Alekseyenko AV, Kim N, Lee CJ. Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA. 2007;13(5):661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Artamonova II, Gelfand MS. Comparative genomics and evolution of alternative splicing: the pessimists’ science. Chem Rev. 2007;107(8):3407–30.

    Article  CAS  PubMed  Google Scholar 

  23. Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5(10):R74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoskins AA, Moore MJ. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci. 2012;37(5):179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell. 2003;12(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  26. Zaphiropoulos PG. Genetic variations and alternative splicing: the glioma associated oncogene 1, GLI1. Front Genet. 2012;3:119.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A. 2003;100(1):189–92.

    Article  CAS  PubMed  Google Scholar 

  28. Srinivasan S, Bingham JL, Johnson D. The ABCs of human alternative splicing: a review of ATP-binding cassette transporter splicing. Curr Opin Drug Discov Dev. 2009;12(1):149–58.

    CAS  Google Scholar 

  29. Byrne JA, Strautnieks SS, Ihrke G, Pagani F, Knisely AS, Linton KJ, et al. Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology. 2009;49(2):553–67.

    Article  CAS  PubMed  Google Scholar 

  30. Davit-Spraul A, Oliveira C, Gonzales E, Gaignard P, Therond P, Jacquemin E. Liver transcript analysis reveals aberrant splicing due to silent and intronic variations in the ABCB11 gene. Mol Genet Metab. 2014;113(3):225–9.

    Article  CAS  PubMed  Google Scholar 

  31. Van der Bliek AM, Baas F, Ten Houte de Lange T, Kooiman PM, Van der Velde-Koerts T, Borst P. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 1987;6(11):3325–31.

    PubMed  PubMed Central  Google Scholar 

  32. Khabou B, Siala-Sahnoun O, Gargouri L, Mkaouar-Rebai E, Keskes L, Hachicha M, et al. In silico investigation of the impact of synonymous variants in ABCB4 gene on mRNA stability/structure, splicing accuracy and codon usage: potential contribution to PFIC3 disease. Comput Biol Chem. 2016;65:103–9.

    Article  CAS  PubMed  Google Scholar 

  33. Schneider G, Paus TC, Kullak-Ublick GA, Meier PJ, Wienker TF, Lang T, et al. Linkage between a new splicing site mutation in the MDR3 alias ABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology. 2007;45(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  34. Tavian D, Degiorgio D, Roncaglia N, Vergani P, Cameroni I, Colombo R, et al. A new splicing site mutation of the ABCB4 gene in intrahepatic cholestasis of pregnancy with raised serum gamma-GT. Dig Liver Dis. 2009;41(9):671–5.

    Article  CAS  PubMed  Google Scholar 

  35. Lamba JK, Adachi M, Sun D, Tammur J, Schuetz EG, Allikmets R, et al. Nonsense mediated decay downregulates conserved alternatively spliced ABCC4 transcripts bearing nonsense codons. Hum Mol Genet. 2003;12(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  36. Ansari M, Sauty G, Labuda M, Gagne V, Laverdiere C, Moghrabi A, et al. Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood. 2009;114(7):1383–6.

    Article  CAS  PubMed  Google Scholar 

  37. Gradhand U, Lang T, Schaeffeler E, Glaeser H, Tegude H, Klein K, et al. Variability in human hepatic MRP4 expression: influence of cholestasis and genotype. Pharmacogenomics J. 2008;8(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  38. Janke D, Mehralivand S, Strand D, Godtel-Armbrust U, Habermeier A, Gradhand U, et al. 6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4. Hum Mutat. 2008;29(5):659–69.

    Article  CAS  PubMed  Google Scholar 

  39. Toh S, Wada M, Uchiumi T, Inokuchi A, Makino Y, Horie Y, et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. Am J Hum Genet. 1999;64(3):739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kajihara S, Hisatomi A, Mizuta T, Hara T, Ozaki I, Wada I, et al. A splice mutation in the human canalicular multispecific organic anion transporter gene causes Dubin-Johnson syndrome. Biochem Biophys Res Commun. 1998;253(2):454–7.

    Article  CAS  PubMed  Google Scholar 

  41. Tate G, Li M, Suzuki T, Mitsuya T. A new mutation of the ATP-binding cassette, sub-family C, member 2 (ABCC2) gene in a Japanese patient with Dubin-Johnson syndrome. Genes Genet Syst. 2002;77(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  42. Kanda D, Takagi H, Kawahara Y, Yata Y, Takakusagi T, Hatanaka T, et al. Novel large-scale deletion (whole exon 7) in the ABCC2 gene in a patient with the Dubin-Johnson syndrome. Drug Metab Pharmacokinet. 2009;24(5):464–8.

    Article  CAS  PubMed  Google Scholar 

  43. Mor-Cohen R, Zivelin A, Rosenberg N, Goldberg I, Seligsohn U. A novel ancestral splicing mutation in the multidrug resistance protein 2 gene causes Dubin-Johnson syndrome in Ashkenazi Jewish patients. Hepatol Res. 2005;31(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  44. Nakanishi T, Bailey-Dell KJ, Hassel BA, Shiozawa K, Sullivan DM, Turner J, et al. Novel 5′ untranslated region variants of BCRP mRNA are differentially expressed in drug-selected cancer cells and in normal human tissues: implications for drug resistance, tissue-specific expression, and alternative promoter usage. Cancer Res. 2006;66(10):5007–11.

    Article  CAS  PubMed  Google Scholar 

  45. Poonkuzhali B, Lamba J, Strom S, Sparreboom A, Thummel K, Watkins P, et al. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos. 2008;36(4):780–95.

    Article  CAS  PubMed  Google Scholar 

  46. Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerova D, Rayner A, Dutton L, et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008;134(4):1203–14.

    Article  CAS  PubMed  Google Scholar 

  47. van Mil SW, van der Woerd WL, van der Brugge G, Sturm E, Jansen PL, Bull LN, et al. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology. 2004;127(2):379–84.

    Article  PubMed  CAS  Google Scholar 

  48. Arrese M, Macias RI, Briz O, Perez MJ, Marin JJ. Molecular pathogenesis of intrahepatic cholestasis of pregnancy. Expert Rev Mol Med. 2008;10:e9.

    Article  PubMed  Google Scholar 

  49. Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 2007;453(5):601–10.

    Article  CAS  PubMed  Google Scholar 

  50. Hu Y, Tanzer LR, Cao J, Geringer CD, Moore RE. Use of long RT-PCR to characterize splice variant mRNAs. BioTechniques. 1998;25(2):224–9.

    CAS  PubMed  Google Scholar 

  51. Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29(4):200–7.

    Article  CAS  PubMed  Google Scholar 

  52. Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The pharmacological and physiological role of multidrug-resistant protein 4. J Pharmacol Exp Ther. 2015;354(3):358–75.

    Article  CAS  PubMed  Google Scholar 

  53. Chen C, Klaassen CD. Rat multidrug resistance protein 4 (Mrp4, Abcc4): molecular cloning, organ distribution, postnatal renal expression, and chemical inducibility. Biochem Biophys Res Commun. 2004;317(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  54. Mesrian TH, Rahgozar S, Mojtabavi NM. ABCC4 functional SNP in the 3′ splice acceptor site of exon 8 (G912T) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2017;80(1):109–17.

    Article  CAS  Google Scholar 

  55. Kartenbeck J, Leuschner U, Mayer R, Keppler D. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology. 1996;23(5):1061–6.

    CAS  PubMed  Google Scholar 

  56. Scheffer GL, Kool M, de Haas M, de Vree JM, Pijnenborg AC, Bosman DK, et al. Tissue distribution and induction of human multidrug resistant protein 3. Lab Investig. 2002;82(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  57. Kool M, van der Linden M, de Haas M, Scheffer GL, de Vree JM, Smith AJ, et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A. 1999;96(12):6914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van de Wetering K, Feddema W, Helms JB, Brouwers JF, Borst P. Targeted metabolomics identifies glucuronides of dietary phytoestrogens as a major class of MRP3 substrates in vivo. Gastroenterology. 2009;137(5):1725–35.

    Article  PubMed  CAS  Google Scholar 

  59. Fromm MF, Leake B, Roden DM, Wilkinson GR, Kim RB. Human MRP3 transporter: identification of the 5′-flanking region, genomic organization and alternative splice variants. Biochim Biophys Acta. 1999;1415(2):369–74.

    Article  CAS  PubMed  Google Scholar 

  60. Stacy AE, Jansson PJ, Richardson DR. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol Pharmacol. 2013;84(5):655–69.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    Article  CAS  PubMed  Google Scholar 

  62. Sandor S, Jordanidisz T, Schamberger A, Varady G, Erdei Z, Apati A, et al. Functional characterization of the ABCG2 5′ non-coding exon variants: stem cell specificity, translation efficiency and the influence of drug selection. Biochim Biophys Acta. 2016;1859(7):943–51.

    Article  CAS  PubMed  Google Scholar 

  63. Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with Heme. J Biol Chem. 2004;279(23):24218–25.

    Article  CAS  PubMed  Google Scholar 

  64. Zong Y, Zhou S, Fatima S, Sorrentino BP. Expression of mouse Abcg2 mRNA during hematopoiesis is regulated by alternative use of multiple leader exons and promoters. J Biol Chem. 2006;281(40):29625–32.

    Article  CAS  PubMed  Google Scholar 

  65. Hayer M, Bonisch H, Bruss M. Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann Hum Genet. 1999;63(Pt 6):473–82.

    Article  CAS  PubMed  Google Scholar 

  66. Grinfeld J, Gerrard G, Alikian M, Alonso-Dominguez J, Ale S, Valganon M, et al. A common novel splice variant of SLC22A1 (OCT1) is associated with impaired responses to imatinib in patients with chronic myeloid leukaemia. Br J Haematol. 2013;163(5):631–9.

    Article  CAS  PubMed  Google Scholar 

  67. Herraez E, Lozano E, Macias RI, Vaquero J, Bujanda L, Banales JM, et al. Expression of SLC22A1 variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib. Hepatology. 2013;58(3):1065–73.

    Article  CAS  PubMed  Google Scholar 

  68. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002;13(7):1703–10.

    Article  CAS  PubMed  Google Scholar 

  69. Hotchkiss AG, Berrigan L, Pelis RM. Organic anion transporter 2 transcript variant 1 shows broad ligand selectivity when expressed in multiple cell lines. Front Pharmacol. 2015;6:216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther. 2002;301(3):797–802.

    Article  CAS  PubMed  Google Scholar 

  71. Cropp CD, Komori T, Shima JE, Urban TJ, Yee SW, More SS, et al. Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol. 2008;73(4):1151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, et al. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res. 2008;68(24):10315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thakkar N, Kim K, Jang ER, Han S, Kim K, Kim D, et al. A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm of colon and pancreatic cancer cells. Mol Pharm. 2013;10(1):406–16.

    Article  CAS  PubMed  Google Scholar 

  74. Imai S, Kikuchi R, Tsuruya Y, Naoi S, Nishida S, Kusuhara H, et al. Epigenetic regulation of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res. 2013;30(11):2880–90.

    Article  CAS  PubMed  Google Scholar 

  75. Nagai M, Furihata T, Matsumoto S, Ishii S, Motohashi S, Yoshino I, et al. Identification of a new organic anion transporting polypeptide 1B3 mRNA isoform primarily expressed in human cancerous tissues and cells. Biochem Biophys Res Commun. 2012;418(4):818–23.

    Article  CAS  PubMed  Google Scholar 

  76. Teft WA, Welch S, Lenehan J, Parfitt J, Choi YH, Winquist E, et al. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy. Br J Cancer. 2015;112(5):857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramachandran A, Betts G, Bhana S, Helme G, Blick C, Moller-Levet C, et al. An in vivo hypoxia metagene identifies the novel hypoxia inducible factor target gene SLCO1B3. Eur J Cancer. 2013;49(7):1741–51.

    Article  CAS  PubMed  Google Scholar 

  78. Maeda T, Hirayama M, Higashi R, Sato M, Tamai I. Characterization of human OATP2B1 (SLCO2B1) gene promoter regulation. Pharm Res. 2006;23(3):513–20.

    Article  CAS  PubMed  Google Scholar 

  79. Pomari E, Nardi A, Fiore C, Celeghin A, Colombo L, Dalla VL. Transcriptional control of human organic anion transporting polypeptide 2B1 gene. J Steroid Biochem Mol Biol. 2009;115(3–5):146–52.

    Article  CAS  PubMed  Google Scholar 

  80. Knauer MJ, Girdwood AJ, Kim RB, Tirona RG. Transport function and transcriptional regulation of a liver-enriched human organic anion transporting polypeptide 2B1 transcriptional start site variant. Mol Pharmacol. 2013;83(6):1218–28.

    Article  CAS  PubMed  Google Scholar 

  81. Saito H, Motohashi H, Mukai M, Inui K. Cloning and characterization of a pH-sensing regulatory factor that modulates transport activity of the human H+/peptide cotransporter, PEPT1. Biochem Biophys Res Commun. 1997;237(3):577–82.

    Article  CAS  PubMed  Google Scholar 

  82. Urtti A, Johns SJ, Sadee W. Genomic structure of proton-coupled oligopeptide transporter hPEPT1 and pH-sensing regulatory splice variant. AAPS PharmSci. 2001;3(1):E6.

    CAS  PubMed  Google Scholar 

  83. Anderle P, Nielsen CU, Pinsonneault J, Krog PL, Brodin B, Sadee W. Genetic variants of the human dipeptide transporter PEPT1. J Pharmacol Exp Ther. 2006;316(2):636–46.

    Article  CAS  PubMed  Google Scholar 

  84. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17(8):2127–35.

    Article  CAS  PubMed  Google Scholar 

  85. Hyrsova L, Smutny T, Trejtnar F, Pavek P. Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation. Drug Metab Rev. 2016;48(2):139–58.

    Article  CAS  PubMed  Google Scholar 

  86. Goswami S, Gong L, Giacomini K, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for SLC22A1. Pharmacogenet Genomics. 2014;24(6):324–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Watkins DB, Hughes TP, White DL. OCT1 and imatinib transport in CML: is it clinically relevant? Leukemia. 2015;29(10):1960–9.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou Y, Ye W, Wang Y, Jiang Z, Meng X, Xiao Q, et al. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int J Clin Exp Pathol. 2015;8(8):9533–42.

    PubMed  PubMed Central  Google Scholar 

  89. Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet. 2007;52(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  90. Grimm D, Lieb J, Weyer V, Vollmar J, Darstein F, Lautem A, et al. Organic cation transporter 1 (OCT1) mRNA expression in hepatocellular carcinoma as a biomarker for sorafenib treatment. BMC Cancer. 2016;16:94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Motohashi H, Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013;15(2):581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Urban TJ, Sebro R, Hurowitz EH, Leabman MK, Badagnani I, Lagpacan LL, et al. Functional genomics of membrane transporters in human populations. Genome Res. 2006;16(2):223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shen H, Lai Y, Rodrigues AD. Organic anion transporter 2: an enigmatic human solute carrier. Drug Metab Dispos. 2017;45(2):228–36.

    Article  CAS  PubMed  Google Scholar 

  94. Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999;274(24):17159–63.

    Article  CAS  PubMed  Google Scholar 

  95. Thakkar N, Lockhart AC, Lee W. Role of organic anion-transporting polypeptides (OATPs) in cancer therapy. AAPS J. 2015;17(3):535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Furihata T, Sun Y, Chiba K. Cancer-type organic anion transporting polypeptide 1B3: current knowledge of the gene structure, expression profile, functional implications and future perspectives. Curr Drug Metab. 2015;16(6):474–85.

    Article  CAS  PubMed  Google Scholar 

  97. Lockhart AC, Harris E, Lafleur BJ, Merchant NB, Washington MK, Resnick MB, et al. Organic anion transporting polypeptide 1B3 (OATP1B3) is overexpressed in colorectal tumors and is a predictor of clinical outcome. Clin Exp Gastroenterol. 2008;1:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Muto M, Onogawa T, Suzuki T, Ishida T, Rikiyama T, Katayose Y, et al. Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci. 2007;98(10):1570–6.

    Article  CAS  PubMed  Google Scholar 

  99. Meyer zu Schwabedissen HE, Ware JA, Tirona RG, Kim RB. Identification, expression, and functional characterization of full-length and splice variants of murine organic anion transporting polypeptide 1b2. Mol Pharm. 2009;6(6):1790–7.

    Article  CAS  PubMed  Google Scholar 

  100. Hays A, Apte U, Hagenbuch B. Organic anion transporting polypeptides expressed in pancreatic cancer may serve as potential diagnostic markers and therapeutic targets for early stage adenocarcinomas. Pharm Res. 2013;30(9):2260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sun Y, Furihata T, Ishii S, Nagai M, Harada M, Shimozato O, et al. Unique expression features of cancer-type organic anion transporting polypeptide 1B3 mRNA expression in human colon and lung cancers. Clin Transl Med. 2014;3:37.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sun Y, Harada M, Shimozato O, Souda H, Takiguchi N, Nabeya Y, et al. Cancer-type OATP1B3 mRNA has the potential to become a detection and prognostic biomarker for human colorectal cancer. Biomark Med. 2017;11(8):629–639.

  103. Han S, Kim K, Thakkar N, Kim D, Lee W. Role of hypoxia inducible factor-1alpha in the regulation of the cancer-specific variant of organic anion transporting polypeptide 1B3 (OATP1B3), in colon and pancreatic cancer. Biochem Pharmacol. 2013;86(6):816–23.

    Article  CAS  PubMed  Google Scholar 

  104. Ichihara S, Kikuchi R, Kusuhara H, Imai S, Maeda K, Sugiyama Y. DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res. 2010;27(3):510–6.

    Article  CAS  PubMed  Google Scholar 

  105. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.

    Article  CAS  PubMed  Google Scholar 

  106. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359(8):789–99.

    Article  CAS  PubMed  Google Scholar 

  107. Kim SR, Saito Y, Sai K, Kurose K, Maekawa K, Kaniwa N, et al. Genetic variations and frequencies of major haplotypes in SLCO1B1 encoding the transporter OATP1B1 in Japanese subjects: SLCO1B1*17 is more prevalent than *15. Drug Metab Pharmacokinet. 2007;22(6):456–61.

    Article  PubMed  Google Scholar 

  108. Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001;120(2):525–33.

    Article  CAS  PubMed  Google Scholar 

  109. Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I. Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J Pharmacol Exp Ther. 2004;308(2):438–45.

    Article  PubMed  CAS  Google Scholar 

  110. Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368(6471):563–6.

    Article  CAS  PubMed  Google Scholar 

  111. Gaildrat P, Moller M, Mukda S, Humphries A, Carter DA, Ganapathy V, et al. A novel pineal-specific product of the oligopeptide transporter PepT1 gene: circadian expression mediated by cAMP activation of an intronic promoter. J Biol Chem. 2005;280(17):16851–60.

    Article  CAS  PubMed  Google Scholar 

  112. Graul RC, Sadee W. Sequence alignments of the H(+)-dependent oligopeptide transporter family PTR: inferences on structure and function of the intestinal PET1 transporter. Pharm Res. 1997;14(4):388–400.

    Article  CAS  PubMed  Google Scholar 

  113. Pinsonneault J, Nielsen CU, Sadee W. Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions. J Pharmacol Exp Ther. 2004;311(3):1088–96.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang EY, Emerick RM, Pak YA, Wrighton SA, Hillgren KM. Comparison of human and monkey peptide transporters: PEPT1 and PEPT2. Mol Pharm. 2004;1(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  115. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A. 2005;102(50):17923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yonezawa A, Inui K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol. 2011;164(7):1817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol. 2007;74(2):359–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooin Lee.

Additional information

Guest Editors: Wooin Lee and Takeo Nakanishi

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.E., Ryoo, G. & Lee, W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS J 19, 1643–1655 (2017). https://doi.org/10.1208/s12248-017-0150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0150-0

Keywords

Navigation