Skip to main content
Log in

Quantification of the Pharmacodynamic Interaction of Morphine and Gabapentin Using a Response Surface Approach

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The combination of morphine and gabapentin has shown to be promising for managing postoperative pain but finding the right dose for the combination has proven to be a challenge. The purpose of this study was to quantitatively characterize the pharmacodynamic interaction between the two drugs and to identify the optimal concentration–effect relationship of the combination. Information regarding plasma concentrations and von Frey withdrawal thresholds following incisional surgery on Sprague Dawley rats, after administration of morphine, gabapentin, or their combination was available from published studies. The combined pharmacodynamic effect of morphine and gabapentin was analyzed and linked to drug plasma concentrations via a response surface approach using non-linear mixed-effect modeling. Full reversal of withdrawal thresholds for the pain stimulation to presurgery values was estimated at morphine plasma concentration of 435.1 ng/mL. Co-administration of up to 40 μg/mL of gabapentin led to a reduction of the needed morphine concentration down to 307.5 ng/mL (~ 29% reduction). Combination of concentration ranges of gabapentin between 20 and 40 μg/mL with any morphine concentrations between 100 and 600 ng/mL were found to lead up to 50% increased effect relatively to the effect attained by morphine alone. This study highlights the importance of finding the right combination in multimodal analgesia and demonstrates the usefulness of the response surface approach for the study of pharmacodynamic interactions. The proposed pharmacokinetic–pharmacodynamic model may provide the basis for a rational clinical trial design with the aim to identify the optimal dose combination ratios in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372:139–44.

    Article  PubMed  Google Scholar 

  2. American Society of Anesthesiologists (ASA) Committee on Standards and Practice Parameters. Practice guidelines for acute pain management in the perioperative setting an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology. 2012;116:248–73.

    Article  Google Scholar 

  3. Jonker DM, Visser SAG, van der Graaf PH, Voskuyl RA, Danhof M. Towards a mechanism-based analysis of pharmacodynamic drug-drug interactions in vivo. Pharmacol Ther. 2005;106:1–18.

    Article  CAS  PubMed  Google Scholar 

  4. Dahl JB, Nielsen RV, Wetterslev J, Nikolajsen L, Hamunen K, Kontinen VK, et al. Post-operative analgesic effects of paracetamol, NSAIDs, glucocorticoids, gabapentinoids and their combinations: a topical review. Acta Anaesthesiol Scand. 2014;58:1165–81.

    Article  CAS  PubMed  Google Scholar 

  5. Mathiesen O, Møiniche S, Dahl JB. Gabapentin and postoperative pain: a qualitative and quantitative systematic review, with focus on procedure. BMC Anesthesiol. 2007;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sebastian S, Sheena D, Andrew MR, Wiffen PJ, McQuay HJ. Single dose oral gabapentin for established acute postoperative pain in adults. Cochrane Database Syst Rev. 2010 Issue 5 John Wiley Sons, Ltd Chichest 2010;

  7. Dirks J, Fredensborg BB, Christensen D, Fomsgaard JS, Flyger H, Dahl JB. A randomized study of the effects of single-dose gabapentin versus placebo on postoperative pain and morphine consumption after mastectomy. Anesthesiology. 2002;97:560–4.

    Article  CAS  PubMed  Google Scholar 

  8. Turan A, Karamanlioğlu B, Memiş D, Hamamcioglu MK, Tükenmez B, Pamukçu Z, et al. Analgesic effects of gabapentin after spinal surgery. Anesthesiology. 2004;100:935–8.

    Article  CAS  PubMed  Google Scholar 

  9. Shimoyama M, Shimoyama N, Inturrisi CE, Elliott KJ. Gabapentin enhances the antinociceptive effects of spinal morphine in the rat tail-flick test. Pain. 1997;72:375–82.

    Article  CAS  PubMed  Google Scholar 

  10. Matthews E, Dickenson A. A combination of gabapentin and morphine mediates enhanced inhibitory effects on dorsal horn neuronal responses in a rat model of neuropathy. Anesthesiology. 2002;96:633–40.

    Article  CAS  PubMed  Google Scholar 

  11. Smiley MM, Lu Y, Vera-Portocarrero LP, Zidan A, Westlund KN. Intrathecal gabapentin enhances the analgesic effects of subtherapeutic dose morphine in a rat experimental pancreatitis model. Anesthesiology. 2004;101:759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papathanasiou T, Juul RV, Heegaard A-M, Kreilgaard M, Lund TM. Co-administration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain. Eur J Pharm Sci. 2016;82:97–105.

    Article  CAS  PubMed  Google Scholar 

  13. Lunn TH, Husted H, Laursen MB, Hansen LT, Kehlet H. Analgesic and sedative effects of perioperative gabapentin in total knee arthroplasty: a randomized, double-blind, placebo-controlled, dose-finding study. Pain. 2015;156:1.

    Article  Google Scholar 

  14. Paul JE, Nantha-Aree M, Buckley N, Shahzad U, Cheng J, Thabane L, et al. Randomized controlled trial of gabapentin as an adjunct to perioperative analgesia in total hip arthroplasty patients. Can J Anesth. 2015;62:476–84.

    Article  PubMed  Google Scholar 

  15. Nikolajsen L, Finnerup NB, Kramp S, Vimtrup A-S, Keller J, Jensen TS. A randomized study of the effects of gabapentin on postamputation pain. Anesthesiology. 2006;105:1008–15.

    Article  CAS  PubMed  Google Scholar 

  16. Papathanasiou T, Juul RV, Gabel-Jensen C, Kreilgaard M, Lund TM. Population pharmacokinetic modelling of morphine, gabapentin and their combination in the rat. Pharm Res. 2016;33:2630–43.

    Article  CAS  PubMed  Google Scholar 

  17. Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain. 1996;64:493–501.

    Article  CAS  PubMed  Google Scholar 

  18. Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL. Response surface model for anesthetic drug interactions. Anesthesiology. 2000;92:1603–16.

    Article  CAS  PubMed  Google Scholar 

  19. Tena B, Escobar B, Arguis MJ, Cantero C, Rios J, Gomar C. Reproducibility of electronic von Frey and von Frey monofilaments testing. Clin J Pain. 2012;28:318–23.

    Article  PubMed  Google Scholar 

  20. Beal S, Sheiner L, Boeckmann A, Bauer R. NONMEM user’s guides. (1989–2009). Ellicott City: Icon Dev. Solut.; 2009.

    Google Scholar 

  21. Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol. 2013;2:e50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R Core Team. R: a language and environment for statistical computing. Vienna . URL https://www.R-project.org/: R Foundation for Statistical Computing; 2016.

    Google Scholar 

  23. Wickham H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat 2011;3:180–5.

  24. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995;47:331–85.

    CAS  PubMed  Google Scholar 

  25. Yassen A, Olofsen E, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics. J Pharmacol Exp Ther. 2005;313:1136–49.

    Article  CAS  PubMed  Google Scholar 

  26. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28:481–504.

    Article  CAS  PubMed  Google Scholar 

  27. Dahan A, Nieuwenhuijs D, Olofsen E, Sarton E, Romberg R, Teppema L. Response surface modeling of alfentanil-sevoflurane interaction on cardiorespiratory control and bispectral index. Anesthesiology. 2001;94:982–91.

    Article  CAS  PubMed  Google Scholar 

  28. Fidler M, Kern SE. Flexible interaction model for complex interactions of multiple anesthetics. Anesthesiology. 2006;105:286–96.

    Article  PubMed  Google Scholar 

  29. Schmidt PC, Ruchelli G, Mackey SC, Carroll IR. Perioperative gabapentinoids: choice of agent, dose, timing, and effects on chronic postsurgical pain. Anesthesiology. 2013;119:1215–21.

    Article  PubMed  Google Scholar 

  30. Xu J, Brennan TJ. The pathophysiology of acute pain: animal models. Curr Opin Anaesthesiol. 2011;24:508–14.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Geary N. Understanding synergy. Am J Physiol Endocrinol Metab. 2013;304:E237–53.

    Article  CAS  PubMed  Google Scholar 

  32. Sverrisdóttir E, Lund TM, Olesen AE, Drewes AM, Christrup LL, Kreilgaard M. A review of morphine and morphine-6-glucuronide’s pharmacokinetic-pharmacodynamic relationships in experimental and clinical pain. Eur J Pharm Sci. 2015;74:45–62.

    Article  PubMed  Google Scholar 

  33. Taylor CP. Mechanisms of analgesia by gabapentin and pregabalin-calcium channel alpha2-delta [Cavalpha2-delta] ligands. Pain. 2009;142:13–6.

    Article  CAS  PubMed  Google Scholar 

  34. Omote K, Sonoda H, Kawamata M, Iwasaki H, Namiki A. Potentiation of antinociceptive effects of morphine by calcium-channel blockers at the level of the spinal cord. Anesthesiology. 1993;79:746–52.

    Article  CAS  PubMed  Google Scholar 

  35. Eipe N, Penning J, Yazdi F, Mallick R, Turner L, Ahmadzai N, et al. Perioperative use of pregabalin for acute pain—a systematic review and meta-analysis. Pain. 2015;156:1284–300.

    Article  PubMed  Google Scholar 

  36. Le Bars D, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev. 2001;53:597–652.

    PubMed  Google Scholar 

  37. Bergstrand M, Karlsson MO. Handling data below the limit of quantification in mixed effect models. AAPS J. 2009;11:371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kehlet H, Dahl JB. The value of “multimodal” or “balanced analgesia” in postoperative pain treatment. Anesth Analg. 1993;77:1048–56.

    Article  CAS  PubMed  Google Scholar 

  39. Myhre M, Diep LM, Stubhaug A. Pregabalin has analgesic, ventilatory, and cognitive effects in combination with remifentanil. Anesthesiology. 2016;124:141–9.

    Article  CAS  PubMed  Google Scholar 

  40. Juul RV, Knøsgaard KR, Olesen AE, Pedersen KV, Kreilgaard M, Christrup LL, et al. A model-based approach for joint analysis of pain intensity and opioid consumption in postoperative pain. AAPS J. 2016;8(4):1013–22.

    Article  Google Scholar 

  41. Juul RV, Rasmussen S, Kreilgaard M, Christrup LL, Simonsson USH, Lund TM. Repeated time-to-event analysis of consecutive analgesic events in postoperative pain. Anesthesiology. 2015;(6):1, 1411–1419.

Download references

Acknowledgements

The study was supported by the Institute of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Meldgaard Lund.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papathanasiou, T., Juul, R.V., Gabel-Jensen, C. et al. Quantification of the Pharmacodynamic Interaction of Morphine and Gabapentin Using a Response Surface Approach. AAPS J 19, 1804–1813 (2017). https://doi.org/10.1208/s12248-017-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0140-2

KEY WORDS

Navigation