Skip to main content

Advertisement

Log in

Intra-articular Injection of Urinary Bladder Matrix Reduces Osteoarthritis Development

  • Research Article
  • Theme: Recent Advances in Musculoskeletal Tissue Engineering
  • Published:
The AAPS Journal Aims and scope Submit manuscript

An Erratum to this article was published on 14 November 2016

Abstract

Micronized porcine urinary bladder matrix (UBM) is an extracellular matrix biomaterial that has immunomodulatory and pro-regenerative properties. The objective of this study was to assess the ability of UBM to alter disease progression in a mouse model of post-traumatic osteoarthritis (OA). Ten-week-old wild-type C57BL/6 male mice underwent anterior cruciate ligament transection (ACLT) to induce OA. Two weeks after ACLT, UBM (50 mg/mL) or saline was injected into the mouse joint. At 4 and 8 weeks post-ACLT, cartilage integrity was assessed using OARSI scoring of histology, pain was evaluated, and joints were harvested for quantitative RT-PCR analysis of cartilage-specific and inflammatory gene expression. UBM-treated animals showed improved cartilage integrity at 4 and 8 weeks and reduced pain at 4 weeks compared to saline-injected mice. Animals injected with UBM expressed higher levels of genes encoding structural cartilage proteins, such as collagen2α1 and aggrecan, as well as anti-inflammatory cytokines, including interleukins 10 and 4. UBM decreased cartilage degeneration in the murine ACLT model of OA, which may be due to reduced inflammation in the joint and maintenance of high expression levels of proteoglycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2010–2012. MMWR Morb Mortal Wkly Rep. 2013;62(44):869–73.

    Google Scholar 

  2. Sutton PM, Holloway ES. The young osteoarthritic knee: dilemmas in management. BMC Med. 2013;11:14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martel-Pelletier J, Wildi LM, Pelletier JP. Future therapeutics for osteoarthritis. Bone. 2012;51(2):297–311.

    Article  CAS  PubMed  Google Scholar 

  4. Oprenyeszk F et al. Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular injection of alginate-chitosan beads dispersed in an hydrogel. Osteoarthr Cartil. 2013;21(8):1099–107.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma B et al. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med. 2013;5(167):167ra6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gao Y et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int. 2014;2014:648459.

    PubMed  PubMed Central  Google Scholar 

  7. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beachley VZ et al. Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat Methods. 2015;12(12):1197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilson J, Hunt T. Molecular biology of the cell: a problems approach. 4th ed. New York: Garland Science; 2002. xxii, 711 p.

    Google Scholar 

  10. Badylak SF. Regenerative medicine and developmental biology: the role of the extracellular matrix. Anat Rec B New Anat. 2005;287(1):36–41.

    Article  PubMed  Google Scholar 

  11. Willett NJ et al. Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development. Arthritis Res Ther. 2014;16(1):R47.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brown B et al. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 2006;12(3):519–26.

    Article  CAS  PubMed  Google Scholar 

  13. Wolf MT et al. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials. 2014;35(25):6838–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song J. Porcine urinary bladder extracellular matrix activates skeletal myogenesis in mouse muscle cryoinjury. J Tissue Eng Regen Med. 2014;3:3.

    Article  Google Scholar 

  15. Sicari BM et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med. 2014;6(234):234ra58.

    Article  PubMed  Google Scholar 

  16. Kimmel H, Rahn M, Gilbert TW. The clinical effectiveness in wound healing with extracellular matrix derived from porcine urinary bladder matrix: a case series on severe chronic wounds. J Am Col Certif Wound Spec. 2010;2(3):55–9.

    PubMed  PubMed Central  Google Scholar 

  17. Lecheminant J, Field C. Porcine urinary bladder matrix: a retrospective study and establishment of protocol. J Wound Care. 2012;21(10):476. 478–80, 482.

    Article  CAS  PubMed  Google Scholar 

  18. Parcells A. The use of urinary bladder matrix in the treatment of complicated open wounds. Wounds. 2014;26(7):189–96.

    Google Scholar 

  19. Valerio I. The use of urinary bladder matrix in the treatment of trauma and combat casualty wound care. Regen Med. 2015;10(5):611–22.

    Article  CAS  PubMed  Google Scholar 

  20. Benito MJ et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64(9):1263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Revell PA et al. The synovial membrane in osteoarthritis: a histological study including the characterisation of the cellular infiltrate present in inflammatory osteoarthritis using monoclonal antibodies. Ann Rheum Dis. 1988;47(4):300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Lange-Brokaar BJ et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr Cartil. 2012;20(12):1484–99.

    Article  PubMed  Google Scholar 

  23. Ruan MZ et al. Pain, motor and gait assessment of murine osteoarthritis in a cruciate ligament transection model. Osteoarthr Cartil. 2013;21(9):1355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glasson SS et al. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil. 2010;18 Suppl 3:S17–23.

    Article  PubMed  Google Scholar 

  25. Ruan MZ et al. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med. 2013;5(176):176ra34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kapoor M et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  27. Kamekura S et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil. 2005;13(7):632–41.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care. 2012;1(1):10–6.

    Article  Google Scholar 

  29. Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response. Biotechniques. 2011;51(4):239–40. 242, 244 passim.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans, C.D., The wear particles of synovial fluid: their ferrographic analysis and pathophysiological significance. Technical Notes, 1981.

  31. Finnegan A et al. Collagen-induced arthritis is exacerbated in IL-10-deficient mice. Arthritis Res Ther. 2003;5(1):R18–24.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2006;22:4.

    Google Scholar 

  33. Miosge N et al. Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochem Cell Biol. 2004;122(3):229–36.

    Article  CAS  PubMed  Google Scholar 

  34. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1173–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salminen H, Vuorio E, Saamanen AM. Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis. Arthritis Rheum. 2001;44(4):947–55.

    Article  CAS  PubMed  Google Scholar 

  36. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13.

  37. Poole R et al. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthr Cartil. 2010;18 Suppl 3:S10–6.

    Article  PubMed  Google Scholar 

  38. da Costa BR et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet. 2016;387(10033):2093–105.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Frisk for editing, Okhee Jeon for histology scoring, The Wilmer NEI-NIH funded Imaging Core, the Wilmer Pooled Professor Fund, and Rhonda Grebe for confocal expertise. ACell Inc. for supplying UBM and providing financial support for the study through a Sponsored Research Agreement was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer H. Elisseeff.

Additional information

Guest Editor: Aliasger K. Salem

The original version of this article was revised: The original article had one of the authors incorrectly listed as “Matthew Wolf” instead of “Matthew T. Wolf”.

An erratum to this article is available at http://dx.doi.org/10.1208/s12248-016-0012-1.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

UBM can reduce chondrocyte toxicity in the presence of IL-1 β. Alamar Blue cell toxicity test. Primary human chondrocytes were cultured in 10 ng/mL IL-1β and each experimental condition for 24 h before performing the Alamar Blue assay. Absorbance values were taken at 570 and 600 nm 3 h after addition of Alamar Blue and percent reduction of Alamar Blue was calculated based on control cells. (GIF 265 kb)

High Resolution Image (TIF 9324 kb)

Fig. S2

(GIF 326 kb)

High Resolution Image (TIF 9966 kb)

Video S1

(AVI 24405 kb)

Video S2

(AVI 29861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, H.N., Rathod, S., Wolf, M.T. et al. Intra-articular Injection of Urinary Bladder Matrix Reduces Osteoarthritis Development. AAPS J 19, 141–149 (2017). https://doi.org/10.1208/s12248-016-9999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9999-6

KEY WORDS

Navigation