Skip to main content
Log in

Development of a Non-Aqueous Dispersion to Improve Intestinal Epithelial Flux of Poorly Permeable Macromolecules

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Intestinal permeation enhancers (PEs) offer an attractive strategy to enable oral peptide administration. However, optimal presentation of peptide and PE from solid-dosage forms is offset by slow dissolution rates in the small intestine, which reduces the likelihood that the PE can reach the threshold concentration for sufficient permeability enhancement. The purpose of this study was to design a PE-based liquid dispersion that can improve intestinal permeation of macromolecules across Caco-2 monolayers and isolated rat/human intestinal mucosae mounted in Ussing chambers. An enhancer screen in monolayers based on permeability (TEER, Papp [14C]-mannitol) and cytotoxicity (MTT assay) initially identified methyl 10-hydroxydecanoate (10-OHC10CH3) as a candidate. 10-OHC10CH3 (20 mM) increased the Papp of fluorescent dextran of 4 kDa (FD4) (167-fold), 10 kDa (FD10) (429-fold), and 40 kDa (FD40) (520-fold) across monolayers. Blends of 10-OHC10CH3 with low molecular weight PEGs (0.2–1 kDa) formed liquid dispersions in which enhancement capacity across monolayers of 10-OHC10CH3 was increased over 10-OHC10CH3 alone in the order PEG200 < PEG400 < PEG600 < PEG1000. Finally, a 1:5 ratio of 10-OHC10CH3 (10–20 mM)/PEG600 (50–100 mM) increased the Papp of [14C]-mannitol across rat and human intestinal mucosae. This study highlights the potential future role for non-aqueous, PE-based liquid dispersions in oral delivery of macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016. doi:10.1016/jaddr201606005.

    PubMed  Google Scholar 

  2. Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016. doi:10.1016/jaddr201602004.

    PubMed  Google Scholar 

  3. Maher S, Ryan B, Duffy A, Brayden DJ. Formulation strategies to improve oral peptide delivery. Pharm Pat Anal. 2014;3(3):313–36.

    Article  CAS  PubMed  Google Scholar 

  4. Junginger H. Excipients as absorption enhancers. In: Krishna R, Yu L, editors. Biopharmaceutics applications in drug development. US: Springer; 2008. p. 139–74.

    Chapter  Google Scholar 

  5. Brayden DJ, Walsh E. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative. Aaps J. 2014;16(5):1064–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robert GS. Currently marketed oral lipid-based dosage forms. Oral lipid-based formulations. Drugs and the pharmaceutical sciences. Boca Raton: CRC Press; 2007. p. 1–31.

    Google Scholar 

  7. Strickley R, Oliyai R. Solubilizing vehicles for oral formulation development. In: Augustijns P, Brewster M, editors. Solvent systems and their selection in pharmaceutics and biopharmaceutics. Biotechnology: pharmaceutical aspects. VI. New York: Springer; 2007. p. 257–308.

    Chapter  Google Scholar 

  8. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30.

    Article  CAS  PubMed  Google Scholar 

  9. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  Google Scholar 

  10. Eaimtrakarn S, Rama Prasad YV, Ohno T, Konishi T, Yoshikawa Y, Shibata N, et al. Absorption enhancing effect of labrasol on the intestinal absorption of insulin in rats. J Drug Target. 2002;10(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  11. Cilek A, Celebi N, Tirnaksiz F. Lecithin-based microemulsion of a peptide for oral administration: preparation, characterization, and physical stability of the formulation. Drug Deliv. 2006;13(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  12. New RRC, Kirby CJ. Solubilisation of hydrophilic drugs in oily formulations. Adv Drug Deliv Rev. 1997;25(1):59–69.

    Article  CAS  Google Scholar 

  13. Tuvia S, Pelled D, Marom K, Salama P, Levin-Arama M, Karmeli I, et al. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm Res. 2014;31(8):2010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hintzen F, Perera G, Hauptstein S, Muller C, Laffleur F, Bernkop-Schnurch A. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int J Pharm. 2014;472(1–2):20–6.

    Article  CAS  PubMed  Google Scholar 

  15. Walsh EG, Adamczyk BE, Chalasani KB, Maher S, O’Toole EB, Fox JS, et al. Oral delivery of macromolecules: rationale underpinning gastrointestinal permeation enhancement technology (GIPET). Ther Deliv. 2011;2(12):1595–610.

    Article  CAS  PubMed  Google Scholar 

  16. Maher S, Leonard TW, Jacobsen J, Brayden DJ. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv Drug Deliv Rev. 2009;61(15):1427–49.

    Article  CAS  PubMed  Google Scholar 

  17. Carballeira NM, Miranda C, Parang K. The first total synthesis of (+/−)-4-methoxydecanoic acid: a novel antifungal fatty acid. Tetrahedron Lett. 2009;50(41):5699–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies JT. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. Gas/liquid and liquid/liquid interface. Proc Int Congr Surf Act. Vol. 1. London: Butterworths; 1957. p. 426-438.

  19. Hubatsch I, Ragnarsson EG, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2(9):2111–9.

    Article  CAS  PubMed  Google Scholar 

  20. Maher S, Kennelly R, Bzik VA, Baird AW, Wang X, Winter D, et al. Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae. Eur J Pharm Sci. 2009;38(4):291–300.

    Article  CAS  PubMed  Google Scholar 

  21. Petersen SB, Nolan G, Maher S, Rahbek UL, Guldbrandt M, Brayden DJ. Evaluation of alkylmaltosides as intestinal permeation enhancers: comparison between rat intestinal mucosal sheets and Caco-2 monolayers. Eur J Pharm Sci. 2012;47(4):701–12.

    Article  CAS  PubMed  Google Scholar 

  22. Brayden DJ, Gleeson J, Walsh EG. A head-to-head multi-parametric high content analysis of a series of medium chain fatty acid intestinal permeation enhancers in Caco-2 cells. Eur J Pharm Biopharm. 2014;88(3):830–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sarode AV, Kumbharkhane AC. Dielectric relaxation study of poly(ethylene glycols) using TDR technique. J Mol Liq. 2011;164(3):226–32.

    Article  CAS  Google Scholar 

  24. Pharmaceutical compositions for oral administration of insulin peptides. In: Foeger FA, Novo Nordisk A/S, editors. US Patent # 20130058999.

  25. Li P, Nielsen HM, Fano M, Mullertz A. Preparation and characterization of insulin-surfactant complexes for loading into lipid-based drug delivery systems. J Pharm Sci. 2013;102(8):2689–98.

    Article  CAS  PubMed  Google Scholar 

  26. Zupancic O, Leonaviciute G, Lam HT, Partenhauser A, Podricnik S, Bernkop-Schnurch A. Development and in vitro evaluation of an oral SEDDS for desmopressin. Drug Deliv. 2016;23(6):2074–83.

    Article  CAS  PubMed  Google Scholar 

  27. Luzio SD, Dunseath G, Lockett A, Broke-Smith TP, New RR, Owens DR. The glucose lowering effect of an oral insulin (Capsulin) during an isoglycaemic clamp study in persons with type 2 diabetes. Diabetes Obes Metab. 2010;12(1):82–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Enterprise Ireland (Grant Number TC20130001) and by SFI Center grant (CURAM Medical Devices) grant number 13-RC-20273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Maher.

Ethics declarations

Studies involving dissected rodent tissue were carried out in accordance with the approved UCD Animal Research Ethics Committee protocol [AREC-14-28 Brayden]. Approval for the use of human colonic specimens was obtained from the Ethics Committee of St. Vincent’s University Hospital (Dublin, Ireland) following informed patient consent.

Glossary

10-OHC10CH3

Methyl 10-hydroxydecanoate

C8

Sodium caprylate

C10

Sodium caprate

CCh

Carbachol

DMSO

Dimethyl sulfoxide

EDTA

Ethylenediaminetetraacetic acid

ER

Enhancement ratio

FD4 FD10 and FD40

Fluorescent dextran of 4 kDa, 10 kDa, and 40 kDa

HLB

Hydrophilic lipophilic balance

ISC

Short circuit current

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Papp

Apparent permeability coefficient

PdI

Polydispersity index

PE

Permeation enhancer

PEG

Polyethylene glycol

SNAC

(sodium N-[8-(2-hydroxybenzoyl)amino] caprylate)

TEER

Transepithelial electrical resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maher, S., Medani, M., Carballeira, N.N. et al. Development of a Non-Aqueous Dispersion to Improve Intestinal Epithelial Flux of Poorly Permeable Macromolecules. AAPS J 19, 244–253 (2017). https://doi.org/10.1208/s12248-016-9996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9996-9

KEY WORDS

Navigation