Skip to main content
Log in

The Delivery of High-Dose Dry Powder Antibiotics by a Low-Cost Generic Inhaler

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The routine of loading multiple capsules for delivery of high-dose antibiotics is time consuming, which may reduce patient adherence to inhaled treatment. To overcome this limitation, an investigation was carried out using four modified versions of the Aerolizer® that accommodate a size 0 capsule for delivery of high payload formulations. In some prototypes, four piercing pins of 0.6 mm each were replaced with a single centrally located 1.2-mm pin and one-third reduced air inlet of the original design. The performance of these inhalers was evaluated using spray-dried antibiotic powders with distinct morphologies: spherical particles with a highly corrugated surface (colistin and tobramycin) and needle-like particles (rifapentine). The inhalers were tested at capsule loadings of 50 mg (colistin), 30 mg (rifapentine) and 100 mg (tobramycin) using a multistage liquid impinger (MSLI) operating at 60 L/min. The device with a single pin and reduced air inlet showed a superior performance than the other prototypes in dispersing colistin and rifapentine powders, with a fine particle fraction (FPF wt% <5 μm in the aerosol) between 62 and 68%. Subsequently, an Aerolizer® with the same configuration (single pin and one-third air inlet) that accommodates a size 00 capsule was designed to increase the payload of colistin and rifapentine. The performance of the device at various inspiratory flow rates and air volumes achievable by most cystic fibrosis (CF) patients was examined at the maximum capsule loading of 100 mg. The device showed optimal performance at 45 L/min with an air volume of 1.5–2.0 L for colistin and 60 L/min with an air volume of 2.0 L for rifapentine. In conclusion, the modified size 00 Aerolizer® inhaler as a low-cost generic device demonstrated promising results for delivery of various high-dose formulations for treatment of lung infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agent P, Parrott H. Inhaled therapy in cystic fibrosis: agents, devices and regimens. Breathe. 2015;11(2):110–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. González-Juarrero M, O’Sullivan MP. Optimization of inhaled therapies for tuberculosis: the role of macrophages and dendritic cells. Tuberculosis. 2011;91(1):86–92.

    Article  PubMed  Google Scholar 

  3. Karbasi-Afshar R, Aslani J, Ghanei M. Efficacy and safety of inhaler steroids in COPD patients: systematic review and meta-analysis of randomized placebo-controlled trials. Caspian J Intern Med. 2014;5(3):130–6.

    PubMed  PubMed Central  Google Scholar 

  4. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):600–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geller DE. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care. 2005;50(10):1313–22.

    PubMed  Google Scholar 

  6. Zeidler M, Corren J. Hydrofluoroalkane formulations of inhaled corticosteroids for the treatment of asthma. Treat Respir Med. 2012;3(1):35–44. doi:10.2165/00151829-200403010-00005.

    Article  Google Scholar 

  7. Islam N, Gladki E. Dry powder inhalers (DPIs)—a review of device reliability and innovation. Int J Pharm. 2008;360(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Agarkhedkar S, Kulkarni PS, Winston S, Sievers R, Dhere RM, Gunale B, et al. Safety and immunogenicity of dry powder measles vaccine administered by inhalation: a randomized controlled phase I clinical trial. Vaccine. 2014;32(50):6791–7.

    Article  CAS  PubMed  Google Scholar 

  9. Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(6):2613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Novartis Pharmaceuticals UK Ltd. TOBI Podhaler 28 mg inhalation powder, hard capsules. 2015.

  11. Elkins MR, Robinson P, Anderson SD, Perry CP, Daviskas E, Charlton B. Inspiratory flows and volumes in subjects with cystic fibrosis using a new dry powder inhaler device. Open Respir Med J. 2014;8:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hodder R, Price D. Patient preferences for inhaler devices in chronic obstructive pulmonary disease: experience with Respimat(®) Soft Mist(™) Inhaler. Int J Chron Obstruct Pulmon Dis. 2009;4:381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore AC, Stone S. Meeting the needs of patients with COPD: patients’ preference for the Diskus inhaler compared with the Handihaler. Int J Clin Pract. 2004;58(5):444–50.

    Article  CAS  PubMed  Google Scholar 

  14. Young PM, Crapper J, Philips G, Sharma K, Chan H-K, Traini D. Overcoming dose limitations using the Orbital® multi-breath dry powder inhaler. J Aerosol Med Pulm Drug Deliv. 2013;27(2):138–47.

    Article  PubMed  Google Scholar 

  15. Young PM, Salama RO, Zhu B, Phillips G, Crapper J, Chan H-K, et al. Multi-breath dry powder inhaler for delivery of cohesive powders in the treatment of bronchiectasis. Drug Dev Ind Pharm. 2014;41(5):859–65.

    Article  PubMed  Google Scholar 

  16. Zhou Q, Tong Z, Tang P, Citterio M, Yang R, Chan H-K. Effect of device design on the aerosolization of a carrier-based dry powder inhaler—a case study on Aerolizer(®) Foradile (®). AAPS J. 2013;15(2):511–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coates M, Chan H-K, Fletcher D, Raper J. Influence of air flow on the performance of a dry powder inhaler using computational and experimental analyses. Pharm Res. 2005;22:1445–53.

    Article  CAS  PubMed  Google Scholar 

  18. Coates M, Fletcher D, Chan H-K, Raper J. The role of capsule on the performance of a dry powder inhaler using computational and experimental analyses. Pharm Res. 2005;22(6):923–32.

    Article  CAS  PubMed  Google Scholar 

  19. Chew NYK, Chan H-K, Bagster DF, Mukhraiya J. Characterization of pharmaceutical powder inhalers: estimation of energy input for powder dispersion and effect of capsule device configuration. J Aerosol Sci. 2002;33(7):999–1008.

    Article  CAS  Google Scholar 

  20. Coates MS, Chan H-K, Fletcher DF, Raper JA. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: air inlet size. J Pharm Sci. 2006;95(6):1382–92.

    Article  CAS  PubMed  Google Scholar 

  21. Wong WH, Crapper J, Chan H-K, Traini D, Young P. Pharmacopeial methodologies for determining aerodynamic mass distributions of ultra-high dose inhaler medicines. J Pharm Biomed Anal. 2010;51:853–7.

    Article  CAS  PubMed  Google Scholar 

  22. Gurjar M. Colistin for lung infection: an update. J Intensive Care. 2015;3(1):3. doi:10.1186/s40560-015-0072-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chan JGY, Bai X, Traini D. An update on the use of rifapentine for tuberculosis therapy. Expert Opin Drug Deliv. 2014;11(3):421–31. doi:10.1517/17425247.2014.877886.

    Article  CAS  PubMed  Google Scholar 

  24. McKeage K. Tobramycin inhalation powder: a review of its use in the treatment of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Drugs. 2013;73(16):1815–27.

    Article  CAS  PubMed  Google Scholar 

  25. Selvam P, McNair D, Truman R, Smyth HDC. A novel dry powder inhaler: effect of device design on dispersion performance. Int J Pharm. 2010;401(1–2):1–6.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Q, Morton D, Yu H, Jacob J, Wang J, Li J, et al. Colistin powders with high aerosolisation efficiency for respiratory infection: preparation and in vitro evaluation. Immunol Rev. 2013;102(10):3736–47.

    CAS  Google Scholar 

  27. Chan JGY, Duke CC, Ong HX, Chan JCY, Tyne AS, Chan H-K, et al. A novel inhalable form of rifapentine. J Pharm Sci. 2014;103(5):1411–21.

    Article  CAS  PubMed  Google Scholar 

  28. ChemNet. 32986-56-4 tobramycin. 2016 [cited 30/06/2016].

  29. Tiddens HA, Geller DE, Challoner P, Speirs RJ, Kesser KC, Overbeek SE, et al. Effect of dry powder inhaler resistance on the inspiratory flow rates and volumes of cystic fibrosis patients of six years and older. J Aerosol Med. 2006;19(4):456–65.

    Article  CAS  PubMed  Google Scholar 

  30. U.S. Pharmacopeial Convention. Tobamycin inhalation solution In: The tobramycin inhalation solution revision bulletin. The United States Pharmacopeial Convention; 2015.

  31. Miller DP, Tan T, Tarara TE, Nakamura J, Malcolmson RJ, Weers JG. Physical characterization of tobramycin inhalation powder: I. rational design of a stable engineered-particle formulation for delivery to the lungs. Mol Pharm. 2015;12(8):2582–93. doi:10.1021/acs.molpharmaceut.5b00147.

    Article  CAS  PubMed  Google Scholar 

  32. Dash AK, Suryanayanan R. Solid-state properties of tobramycin. Pharm Res. 1991;8(9):1159–65.

    Article  CAS  PubMed  Google Scholar 

  33. Srichana T, Martin GP, Marriott C. Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur J Pharm Sci. 1998;7(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  34. Dal Negro RW. Dry powder inhalers and the right things to remember: a concept review. Multidiscip Respir Med. 2015;10(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clark AR, Hollingworth AM. The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers—implications for in vitro testing. J Aerosol Sci. 1993;6(2):99–110.

    Article  CAS  Google Scholar 

  36. Kruse M, Rosenkranz B, Dobson C, Ayre G, Horowitz A. Safety and tolerability of high-dose formoterol (Aerolizer) and salbutamol (pMDI) in patients with mild/moderate, persistent asthma. Pulm Pharmacol Ther. 2005;18(3):229–34.

    Article  CAS  PubMed  Google Scholar 

  37. Adams WP, Lee SL, Plourde R, Lionberger RA, Bertha CM, Doub WH, et al. Effects of device and formulation on in vitro performance of dry powder inhalers. AAPS J. 2012;14(3):400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hassan MS, Lau RWM. Effect of particle shape on dry particle inhalation: study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech. 2009;10(4):1252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  CAS  PubMed  Google Scholar 

  40. Chan J, Tyne A, Pang A, Chan H-K, Young P, Britton W, et al. A rifapentine-containing inhaled triple antibiotic formulation for rapid treatment of tubercular infection. Pharm Res. 2013;31(5):1239–53. doi:10.1007/s11095-013-1245-7.

    Article  PubMed  Google Scholar 

  41. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16(11):1735–42. doi:10.1023/a:1018910200420.

    Article  CAS  PubMed  Google Scholar 

  42. Tong ZB, Zheng B, Yang RY, Yu AB, Chan HK. CFD-DEM investigation of the dispersion mechanisms in commercial dry powder inhalers. Powder Technol. 2013;240:19–24. doi:10.1016/j.powtec.2012.07.012.

    Article  CAS  Google Scholar 

  43. Kondo T, Tanigaki T, Hibino M, Ohe M, Kato S. Resistances of dry powder inhalers and training whistles and their clinical significance. Arerugi. 2014;63(10):1325–9.

    PubMed  Google Scholar 

  44. Lavorini F. The challenge of delivering therapeutic aerosols to asthma patients. ISRN Allergy. 2013;2013:17.

    Article  Google Scholar 

Download references

Acknowledgments

Thaigarajan Parumasivam is a recipient of the Malaysian Government Scholarship. Sharon Leung is a research fellow supported by the University of Sydney. The authors wish to acknowledge the technical support of Australian Microscopy & Microanalysis Research Facility at the Australian Centre for Microscopy and Microanalysis, The University of Sydney. The work was supported by the Australian Research Council’s Discovery Project (DP150103953), the National Health and Medical Research Council Centre of Research Excellence in Tuberculosis Control (APP1043225) and Project grant (APP104434) and the NSW Government Infrastructure Grant to the Centenary Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Kim Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material Fig. 1

(DOCX 46 kb)

Supplementary material Fig. 2

(DOCX 21 kb)

Supplementary material Fig. 3

(DOCX 16 kb)

Supplementary material Table I

(DOCX 14 kb)

Supplementary material Table II

(DOCX 15 kb)

Supplementary material Table III

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parumasivam, T., Leung, S.S.Y., Tang, P. et al. The Delivery of High-Dose Dry Powder Antibiotics by a Low-Cost Generic Inhaler. AAPS J 19, 191–202 (2017). https://doi.org/10.1208/s12248-016-9988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9988-9

KEY WORDS

Navigation