Skip to main content
Log in

The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs

  • Research Article
  • Theme: Next Generation Formulation Design: Innovations in Material Selection and Functionality
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The aim of this work was to assess the effect of different crystalline polymorphism on surface energetics of D-mannitol using finite dilution inverse gas chromatography (FD-IGC). Pure α, β and δ polymorphs were prepared via solution crystallisation and characterised by powder X-ray diffraction (P-XRD). The dispersive surface energies were found to range from 43 to 34 mJ/m2, 50 to 41 mJ/m2, and 48 to 38 mJ/m2 , for α, β, and δ, respectively, for surface coverage ranging from 0.006 to 0.095. A deconvolution modelling approach was employed to establish their energy sites. The primary sites corresponded to maxima in the dispersive surface energy of 37.1 and 33.5; 43.3 and 39.5; and 38.6, 38.4 and 33.0; for α, β, and δ, respectively. This methodology was also extended to an α-β polymorph mixture to estimate the amount of the constituent α and β components present in the sample. The dispersive surface energies of the α-β mixture were found to be in the range of 48 to 37 mJ/m2 with 40.0, 42.4, 38.4 and 33.1 mJ/m2 sites. The deconvolution modelling method extracted the energy contribution of each of the polymorphs from data for the polymorphic mixture. The mixture was found to have a β-polymorph surface content of ∼19%. This work shows the influence of polymorphism on surface energetics and demonstrates that FD-IGC coupled with a simple modelling approach to be a powerful tool for assessing the specific nature of this energetic distribution including the quantification of polymorphic content on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aguiar AJ, Krc J, Kinkel AW, Samyn JC. J Pharm Sci. 1967;56(7):847–53.

    Article  CAS  PubMed  Google Scholar 

  2. Borka L, Haleblian JK. Acta Pharm Jugosl. 1990;40:71–94.

    CAS  Google Scholar 

  3. Burger A, Ramberger R. Microchim Acta. 1979;72(3–4):259–71.

    Article  Google Scholar 

  4. Navrotsky A. Geochem Trans. 2003;4(6):34.

    Article  PubMed Central  Google Scholar 

  5. Li Q, Rudolph V, Weigl B, Earl A. Int J Pharm. 2004;280(1–2):77–93.

    Article  CAS  PubMed  Google Scholar 

  6. Shah UV, Olusanmi D, Narang AS, Hussain MA, Tobyn MJ, Heng JYY. Int J Pharm. 2014;475(1–2):592–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shah UV, Olusanmi D, Narang AS, Hussain MA, Tobyn MJ, Hinder SJ, et al. Pharm Res 2014: 1–12.

  8. Das SC, Zhou Q, Morton DAV, Larson I, Stewart PJ. Eur J Pharm Sci. 2011;43(4):325–33.

    Article  CAS  PubMed  Google Scholar 

  9. Fichtner F, Mahlin D, Welch K, Gaisford S, Alderborn G. Pharm Res. 2008;25(12):2750–9.

    Article  CAS  PubMed  Google Scholar 

  10. Szekely J, Stanek V. Chem Eng Sci. 1969;24(1):11–24.

    Article  CAS  Google Scholar 

  11. Heng JYY, Bismarck A, Lee AF, Wilson K, Williams DR. J Pharm Sci. 2007;96(8):2134–44.

    Article  CAS  PubMed  Google Scholar 

  12. Heng JYY, Bismarck A, Lee AF, Wilson K, Williams DR. Langmuir. 2006;22(6):2760–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ho R, Hinder SJ, Watts JF, Dilworth SE, Williams DR, Heng JYY. Int J Pharm. 2010;387(1–2):79–86.

    Article  CAS  PubMed  Google Scholar 

  14. Shah UV, Olusanmi D, Narang AS, Hussain MA, Gamble JF, Tobyn MJ, et al. Int J Pharm. 2014;472(1–2):140–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, et al. Org Process Res Dev. 2000;4(5):413–7.

    Article  CAS  Google Scholar 

  16. Cares-Pacheco MG, Vaca-Medina G, Calvet R, Espitalier F, Letourneau JJ, Rouilly A, et al. Int J Pharm. 2014;475(1–2):69–81.

    Article  CAS  PubMed  Google Scholar 

  17. Lee AY, Erdemir D, Myerson AS. Annu Rev Chem Biomol Eng. 2011;2(1):259–80.

    Article  CAS  PubMed  Google Scholar 

  18. Chattoraj S, Shi L, Sun CC. CrystEngComm. 2010;12(8):2466–72.

    Article  CAS  Google Scholar 

  19. Yoshinari T, Forbes RT, York P, Kawashima Y. Int J Pharm. 2002;247(1–2):69–77.

    Article  CAS  PubMed  Google Scholar 

  20. Fowkes FM. Dispersion force contributions to surface and interfacial tensions, contact angles, and heats of immersion. Contact Angle, Wettability, and Adhesion. Advances in Chemistry. 43: American Chemical Society, 1964. p. 99–111.

  21. Wu S. Macromol Sci C. 1974;10(1):1–73.

    Article  CAS  Google Scholar 

  22. Schultz J, Lavielle L, Martin C. J Adhes. 1987;23(1):45–60.

    Article  CAS  Google Scholar 

  23. Dorris GM, Gray DG. J Colloid Interface Sci. 1980;77(2):353–62.

    Article  CAS  Google Scholar 

  24. Shi B, Wang Y, Jia L. J Chromatogr A. 2011;1218(6):860–2.

    Article  CAS  PubMed  Google Scholar 

  25. Buckton G, Gill H. Adv Drug Deliv Rev. 2007;59(14):1474–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rudzinski W, Everett DH. Adsorption of gases on heterogeneous surfaces. London: Academic; 1992. p. 529–51.

    Book  Google Scholar 

  27. Harris LB. Surf Sci. 1968;10(2):129–45.

    Article  Google Scholar 

  28. Brunauer S, Emmett PH, Teller E. J Am Chem Soc. 1938;60(2):309–19.

    Article  CAS  Google Scholar 

  29. Thielmann F, Burnett DJ, Heng JYY. Drug Dev Ind Pharm. 2007;33(11):1240–53.

    Article  CAS  PubMed  Google Scholar 

  30. Jefferson AE, Williams DR, Heng JYY. J J Adhes Sci Technol. 2011;25(4–5):339–55.

    Article  CAS  Google Scholar 

  31. Smith RR, Williams DR, Burnett DJ, Heng JYY. Langmuir. 2014;30(27):8029–35.

    Article  CAS  PubMed  Google Scholar 

  32. Aubrey-Medendorp C. Atomic force microscopy method development for surface energy analysis [Doctoral Thesis]. Lexington, KY, United States: University of Kentucky; 2011.

  33. Poornachary SK, Parambil JV, Chow PS, Tan RBH, Heng JYY. Cryst Growth Des. 2013;13(3):1180–6.

    Article  CAS  Google Scholar 

  34. Gamble JF, Leane M, Olusanmi D, Tobyn M, Šupuk E, Khoo J, et al. Int J Pharm. 2012;422(1–2):238–44.

    Article  CAS  PubMed  Google Scholar 

  35. Ylä-Mäihäniemi PP, Heng JYY, Thielmann F, Williams DR. Langmuir. 2008;24(17):9551–7.

    Article  PubMed  Google Scholar 

  36. Stephenson GA, Forbes RA, Reutzel-Edens SM. Adv Drug Deliv Rev. 2001;48(1):67–90.

    Article  CAS  PubMed  Google Scholar 

  37. Shah B, Kakumanu VK, Bansal AK. J Pharm Sci. 2006;95(8):1641–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The PhD studentship, supported by the Engineering and Physical Science Research Council and Surface Measurement Systems for Robert Smith, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Y. Y. Heng.

Additional information

Responsible editors: Otilia M. Koo, Panayiotis P. Constantinides, Lavinia M. Lewis, and Joseph Reo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, R.R., Shah, U.V., Parambil, J.V. et al. The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs. AAPS J 19, 103–109 (2017). https://doi.org/10.1208/s12248-016-9978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9978-y

KEY WORDS

Navigation