The AAPS Journal

, Volume 18, Issue 5, pp 1244–1253 | Cite as

The Impact of Model-Misspecification on Model Based Personalised Dosing

  • David A. J. McDougall
  • Jennifer Martin
  • E. Geoffrey Playford
  • Bruce Green
Research Article

Abstract

Model Based Personalised Dosing (MBPD) requires a population pharmacokinetic (PK) or pharmacodynamic model to determine the optimal dose of medication for an individual. Often several models are published, and the decision of which model is implemented in MBPD may have a large impact on its clinical utility. As quoted by Box, “all models are wrong, the practical question is how wrong can they be and still be useful”. Voriconzole, a triazole antifungal and the example used in this manuscript, currently has nine population PK models published. To assess the impact of model-misspecification on MBPD, five structurally mis-specified models for voriconazole were developed. Intensive plasma concentrations were simulated for 100 virtual subjects. The dose adjustments required to reach a target exposure were determined by using the empirical Bayes estimates of the PK parameters under each of the mis-specified models. The predicted plasma concentrations and the probability of clinical outcomes, upon following the dose recommendations, were determined. Models that did not contain non-linear clearance performed poorly, with a median dose recommendation 155–310 mg higher than appropriate doses, when only one plasma concentration was available. Removal of body weight and CYP2C9 genotype as covariates had no clinically significant impact on outcomes. In summary, the removal of important structural components, such as non-linear clearance in the case of voriconazole, had a large impact on the clinical utility of MBPD. The removal of patient covariates, even highly influential covariates such as CYP2C9 genotype for voriconazole, had no clinical impact.

KEY WORDS

Bayesian dose forecasting dose individualisation model based personalised dosing personalised medicine voriconazole 

Supplementary material

12248_2016_9943_MOESM1_ESM.pdf (750 kb)
ESM 1(PDF 750 kb)
12248_2016_9943_MOESM2_ESM.pdf (39 kb)
ESM 2(PDF 38 kb)
12248_2016_9943_MOESM3_ESM.pdf (27 kb)
ESM 3(PDF 27.4 kb)
12248_2016_9943_MOESM4_ESM.pdf (64 kb)
ESM 4(PDF 64 kb)
12248_2016_9943_MOESM5_ESM.pdf (64 kb)
ESM 5(PDF 64 kb)
12248_2016_9943_MOESM6_ESM.pdf (118 kb)
ESM 6(PDF 118 kb)

References

  1. 1.
    Sheiner LB, Rosenberg B, Melmon KL. Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res. 1972;5(5):411–59.CrossRefPubMedGoogle Scholar
  2. 2.
    Bonate P. Pharmacokinetic-pharmacodynamic modeling and simulation. New York: Springer; 2005.Google Scholar
  3. 3.
    Han PY, Kirkpatrick CM, Green B. Informative study designs to identify true parameter-covariate relationships. J Pharmacokinet Pharmacodyn. 2009;36(2):147–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Walsh TJ, Pappas P, Winston DJ, Lazarus HM, Petersen F, Raffalli J, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med. 2002;346(4):225–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Hicheri Y, Cook G, Cordonnier C. Antifungal prophylaxis in haematology patients: the role of voriconazole. Clin Microbiol Infect. 2012;18 Suppl 2:1–15.CrossRefPubMedGoogle Scholar
  6. 6.
    Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56(9):4793–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Hamada Y, Seto Y, Yago K, Kuroyama M. Investigation and threshold of optimum blood concentration of voriconazole: a descriptive statistical meta-analysis. J Infect Chemother. 2012;18(4):501–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Miyakis S, van Hal SJ, Ray J, Marriott D. Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect. 2010;16(7):927–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Hope WW, Billaud EM, Lestner J, Denning DW. Therapeutic drug monitoring for triazoles. Curr Opin Infect Dis. 2008;21(6):580–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Brüggemann RJM, Donnelly JP, Aarnoutse RE, Warris A, Blijlevens NMA, Mouton JW, et al. Therapeutic drug monitoring of voriconazole. Ther Drug Monit. 2008;30(4):403–11.PubMedGoogle Scholar
  13. 13.
    Wang T, Chen S, Sun J, Cai J, Cheng X, Dong H, et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother. 2014; 69(2):463−70.Google Scholar
  14. 14.
    Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Hope WW. Population pharmacokinetics of voriconazole in adults. Antimicrob Agents Chemother. 2012;56(1):526–31.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dolton MJ, Mikus G, Weiss J, Ray JE, McLachlan AJ. Understanding variability with voriconazole using a population pharmacokinetic approach: implications for optimal dosing. J Antimicrob Chemother. 2014; 69(6):1633–41.Google Scholar
  17. 17.
    Han K, Capitano B, Bies R, Potoski BA, Husain S, Gilbert S, et al. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010;54(10):4424–31.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother. 2012;56(6):3032–42.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nomura K, Fujimoto Y, Kanbayashi Y, Ikawa K, Taniwaki M. Pharmacokinetic-pharmacodynamic analysis of voriconazole in Japanese patients with hematological malignancies. Eur J Clin Microbiol Infect Dis. 2008;27(11):1141–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Han K, Bies R, Johnson H, Capitano B, Venkataramanan R. Population pharmacokinetic evaluation with external validation and Bayesian estimator of voriconazole in liver transplant recipients. Clin Pharmacokinet. 2011;50(3):201–14.CrossRefPubMedGoogle Scholar
  21. 21.
    McDougall DA, Martin J, Playford EG, Green B. Determination of a suitable voriconazole pharmacokinetic model for personalised dosing. J Pharmacokinet Pharmacodyn. 2016; 43(2):165–77.Google Scholar
  22. 22.
    Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Prog Biomed. 2005;79(3):241–57.CrossRefGoogle Scholar
  23. 23.
    Wang G, Lei H-P, Li Z, Tan Z-R, Guo D, Fan L, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65(3):281–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology. 2000;61(3):174–83.CrossRefPubMedGoogle Scholar
  25. 25.
    Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Al-Sallami H, Goulding A, Taylor R, Grant A, Williams S, Duffull S. A semi-mechanistic model for estimating fat free mass in children. Population Analysis Group Europe; Athens 2011.Google Scholar
  27. 27.
    Gilbert DN. The Sanford guide to antimicrobial therapy. Sperryville: Antimicrobial Therapy, Inc; 2011. p. 220.Google Scholar
  28. 28.
    S B, LB S, A B, RJ B. NONMEM user’s guides. (1989–2009). Ellicott City, MD, USA: Icon Development Solutions; 2009.Google Scholar
  29. 29.
    R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014.Google Scholar
  30. 30.
    Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55(10):4782–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Antifungal agents: breakpoint tables for interpretation of MICs. European Committee on Antimicrobial Susceptibility Testing, 2015 2015-11-16. Report No.: Contract No.: 8.0.Google Scholar
  32. 32.
    Box G, NR D. Emperical model-building and response surgaces. New York, NY: Wiley; 1987.Google Scholar
  33. 33.
    Dolton MJ, McLachlan AJ. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents. 2014;44(3):183–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45(7):649–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Geist MJP, Egerer G, Burhenne J, Mikus G. Safety of voriconazole in a patient with CYP2C9*2/CYP2C9*2 genotype. Antimicrob Agents Chemother. 2006;50(9):3227–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196–204.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • David A. J. McDougall
    • 1
    • 2
  • Jennifer Martin
    • 3
  • E. Geoffrey Playford
    • 4
    • 5
  • Bruce Green
    • 2
  1. 1.School of PharmacyUniversity of QueenslandBrisbaneAustralia
  2. 2.Model Answers Pty LtdBrisbaneAustralia
  3. 3.School of Medicine and Public HealthUniversity of NewcastleNewcastleAustralia
  4. 4.Infection Management Services, Princess Alexandra HospitalBrisbaneAustralia
  5. 5.School of MedicineUniversity of QueenslandBrisbaneAustralia

Personalised recommendations