Skip to main content
Log in

Modeling the Disease Progression from Healthy to Overt Diabetes in ZDSD Rats

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Studying the critical transitional phase between healthy to overtly diabetic in type 2 diabetes mellitus (T2DM) is of interest, but acquiring such clinical data is impractical due to ethical concerns and would require a long study duration. A population model using Zucker diabetic Sprague–Dawley (ZDSD) rats was developed to describe this transition through altering insulin sensitivity (IS, %) as a result of accumulating excess body weight and β-cell function (BCF, %) to affect glucose-insulin homeostasis. Body weight, fasting plasma glucose (FPG), and fasting serum insulin (FSI) were collected biweekly over 24 weeks from ZDSD rats (n = 23) starting at age 7 weeks. A semi-mechanistic model previously developed with clinical data was adapted to rat data with BCF and IS estimated relative to humans. Non-linear mixed-effect model estimation was performed using NONMEM. Baseline IS and BCF were 41% compared to healthy humans. BCF was described with a non-linear rise which peaked at 14 weeks before gradually declining to a negligible level. A component for excess growth reflecting obesity was used to affect IS, and a glucose-dependent renal effect exerted a two- to sixfold increase on the elimination of glucose. A glucose-dependent weight loss effect towards the end of experiment was implemented. A semi-mechanistic model to describe the dynamics of glucose and insulin was successfully developed for a rat population, transitioning from healthy to advanced diabetes. It is also shown that weight loss can be modeled to mimic the glucotoxicity phenomenon seen in advanced hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Norris SL, Zhang X, Avenell A, Gregg E, Bowman B, Schmid CH, et al. Long-term effectiveness of weight-loss interventions in adults with pre-diabetes: a review. Am J Prev Med. 2005;28(1):126–39.

    Article  PubMed  Google Scholar 

  2. Karve A, Hayward RA. Prevalence, diagnosis, and treatment of impaired fasting glucose and impaired glucose tolerance in nondiabetic U.S. adults. Diabetes Care. 2010;33(11):2355–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bertram MY, Vos T. Quantifying the duration of pre-diabetes. Aust N Z J Public Health. 2010;34(3):311–4.

    Article  PubMed  Google Scholar 

  4. Shafrir E. Animal models of non-insulin-dependent diabetes. Diabetes Metab Rev. 1992;8(3):179–208.

    Article  CAS  PubMed  Google Scholar 

  5. Peterson RG, Jackson CV, Zimmerman K, De Winter W, Huebert N, Hansen MK. Characterization of the ZDSD rat: A translational model for the study of metabolic syndrome and type 2 diabetes. J Diabetes Res. 2015;487816.

  6. Reinwald S, Peterson RG, Allen MR, Burr DB. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am J Physiol Endocrinol Metab. 2009;296(4):E765–E74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choy S, Kjellsson MC, Karlsson MO, Winter WD. Weight-HbA1c-insulin-glucose model for describing disease progression of type 2 diabetes. CPT: Pharmacometrics Syst Pharmacol. 2015. doi:10.1002/psp4.12051.

    Google Scholar 

  8. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6):697–738.

    Article  CAS  PubMed  Google Scholar 

  9. Macor C, Ruggeri A, Mazzonetto P, Federspil G, Cobelli C, Vettor R. Visceral adipose tissue impairs insulin secretion and insulin sensitivity but not energy expenditure in obesity. Metab Clin Exp. 1997;46(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  10. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program [3]. Diabetes Care. 1998;21(12):2191–2.

    Article  CAS  PubMed  Google Scholar 

  11. Brody S. Bioenergetics and growth. New York: Reinhold Publishing Corporation; 1945.

    Google Scholar 

  12. Lewis SM, Johnson ZJ, Mayhugh MA, Duffy PH. Nutrient intake and growth characteristics of male Sprague–Dawley rats fed AIN-93M purified diet or NIH-31 natural-ingredient diet in a chronic two-year study. Aging Clin Exp Res. 2003;15(6):460–8.

    Article  CAS  PubMed  Google Scholar 

  13. Elia M, Carter A, Bacon S, Winearls CG, Smith R. Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown. Br Med J. 1981;282(6261):351–4.

    Article  CAS  Google Scholar 

  14. Charlton M, Nair KS. Protein metabolism in insulin-dependent diabetes mellitus. J Nutr. 1998;128(2 SUPPL):323S–7S.

    CAS  PubMed  Google Scholar 

  15. Liao JJZ, Liu R. Re-parameterization of five-parameter logistic function. J Chemom. 2009;23(5):248–53.

    Article  CAS  Google Scholar 

  16. de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying Type 2 Diabetes Mellitus. J Pharmacokinet Pharmacodyn. 2006;33(3):313–43.

    Article  PubMed  Google Scholar 

  17. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.

    Article  PubMed  Google Scholar 

  18. Weir GC, Bonner-Weir S. Five of stages of evolving β-cell dysfunction during progression to diabetes. Diabetes. 2004;53 SUPPL 3:S16–21.

    Article  CAS  PubMed  Google Scholar 

  19. Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ. NONMEM User’s Guides. Ellicott City, MD, USA: Icon Development Solutions; 1989–2014.

  20. Dosne AG, Bergstrand M, Karlsson MO. Application of sampling importance resampling to estimate parameter uncertainty distributions. Population Approach Group in Europe 2013. p. Abstr 2907 [www.page-meeting.org/?abstract=2907]

  21. Baek SH, Kim EK, Goudreau JL, Lookingland KJ, Kim SW, Yu SW. Insulin withdrawal-induced cell death in adult hippocampal neural stem cells as a model of autophagic cell death. Autophagy. 2009;5(2):277–9.

    Article  CAS  PubMed  Google Scholar 

  22. Rave K, Nosek L, Posner J, Heise T, Roggen K, van Hoogdalem EJ. Renal glucose excretion as a function of blood glucose concentration in subjects with type 2 diabetes - Results of a hyperglycaemic glucose clamp study. Nephrol Dial Transplant. 2006;21(8):2166–71.

    Article  CAS  PubMed  Google Scholar 

  23. Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, et al. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes. 2002;51(10):2951–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Frontiers in Endocrinology. [Review]. 2013;4.

  25. Henry RR, Wallace P, Olefsky JM. Effects of weight loss on mechanisms of hyperglycemia in obese non-insulin-dependent diabetes mellitus. Diabetes. 1986;35(9):990–8.

    Article  CAS  PubMed  Google Scholar 

  26. McGuire MT, Wing RR, Klein ML, Hill JO. The behavioral characteristics of individuals who lose weight unintentionally. Obes Res. 1999;7(5):485–90.

    Article  CAS  PubMed  Google Scholar 

  27. Gao W, Bihorel S, Dubois DC, Almon RR, Jusko WJ. Mechanism-based disease progression modeling of type 2 diabetes in Goto-Kakizaki rats. J Pharmacokinet Pharmacodyn. 2011;38(1):143–62.

    Article  CAS  PubMed  Google Scholar 

  28. Campetelli G, Lombarte M, Biset H, Rigalli A, Basualdo MS. A rat-human scale-up procedure for the endocrine system. Comput Chem Eng. 2014;71:512–20.

    Article  CAS  Google Scholar 

  29. Eaton DM, Rogers AN, Rice AE, Coy K, Peterson RG, Packer CS. Relationship between dyslipidemia and hypertension (HBP) in male ZDSD, a new rat model of metabolic syndrome (MetS). FASEB J. 2013;27:1190.1.

    Google Scholar 

Download references

Acknowledgments

Steve Choy’s doctoral studies are supported by Janssen Pharmaceutica.

The authors would like to thank Richard Peterson (PreClinOmics, Inc) for supplying the experimental data used in the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Choy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TXT 10 kb)

Appendix I

Appendix I

(a) Derivation of the Brody Growth Function as Differential Equation

The Brody growth function is formulated as

$$ WGT(t)=WG{T}_{\max }-\left(WG{T}_{\max }-WG{T}_0\right){e}^{-kt} $$

where WGT max is the animal’s maximum weight, WGT 0 is the animal’s birth weight, and k is the growth rate of the animal per unit of time t.

The Brody growth function is transformed to a differential equation for use in model analysis through the following proof:

Let

$$ a=WG{T}_{\max } $$
$$ b=WG{T}_0 $$
$$ WGT(t)=a-\left(a-b\right){e}^{-kt} $$
(1)
$$ \frac{dWGT}{dt}=-\left(a-b\right)\left(-k\right){e}^{-kt}=k\left(a-b\right){e}^{-kt} $$
(2)

Subtract a from both sides of (1):

$$ WGT(t)-a=-\left(a-b\right){e}^{-kt} $$
(3)

Multiply both sides of (3) by -1:

$$ -\left(WGT(t)-a\right)=\left(a-b\right){e}^{-kt} $$
(4)

Substitute (4) into (2) to obtain:

$$ \begin{array}{l}\frac{dWGT}{dt}=k\cdot -\left(WGT(t)-a\right)\hfill \\ {}\frac{dWGT}{dt}=-k\left(WGT(t)-a\right)\hfill \\ {}\frac{dWGT}{dt}=k\left(a-WGT(t)\right)\hfill \\ {}\frac{dWGT}{dt}= ka-k\cdot WGT(t)\hfill \\ {}\frac{dWGT}{dt}=k\cdot WG{T}_{max}-k\cdot WGT(t)\hfill \end{array} $$

(b) Derivation of the Natural Growth Rate of Brody Function

The Brody growth function is formulated as

$$ WGT(t)=WG{T}_{\max }-\left(WG{T}_{\max }-WG{T}_0\right){e}^{-kt} $$

where WGT max is the animal’s maximum weight, WGT 0 is the animal’s birth weight, and k is the growth rate of the animal per unit of time t.

We are interested in calculating the natural growth rate k, which is achieved by rearranging the Brody growth function as follows:

$$ \begin{array}{l}WGT(t)-WG{T}_{\max }=-\left(WG{T}_{\max }-WG{T}_0\right){e}^{-kt}\hfill \\ {}\frac{WGT(t)-WG{T}_{\max }}{\left(WG{T}_{\max }-WG{T}_0\right)}=-{e}^{-kt}\hfill \\ {}-\left(\frac{WGT(t)-WG{T}_{\max }}{\left(WG{T}_{\max }-WG{T}_0\right)}\right)={e}^{-kt}\hfill \\ {} ln\left(-\left(\frac{WGT(t)-WG{T}_{\max }}{\left(WG{T}_{\max }-WG{T}_0\right)}\right)\right)=-kt\hfill \\ {}k = \frac{- ln\left(-\left(\frac{WGT(t)-WG{T}_{\max }}{\left(WG{T}_{\max }-WG{T}_0\right)}\right)\right)}{t}\hfill \end{array} $$

The rats were at age 7 weeks at the start of experiment. Values of WGTmax and WGT0 are obtained from the literature (12), and weight at 7 weeks is equal to the observed baseline weight (BLWT).

Substituting WGT max = 840g, WGT(7) = BLWT = 220g, WGT 0 = 6.1g, t = 7, we get:

$$ \begin{array}{l}k = \frac{- ln\left(-\left(\frac{220-840}{\left(840-6.1\right)}\right)\right)}{7}\\ {}k \approx 0.043\ {\mathrm{week}}^{-1}\end{array} $$

(c) Derivation of the Steady-State Quadratic Solution from Differential Equations of FSI and FPG

Assuming steady-state,

$$ 0=\frac{dFSI}{dt}=E{F}_B \cdot B{C}_0\cdot \left(FPG-3.5\right)\cdot Ki{n}_{FSI}-FSI\cdot Kou{t}_{FSI} $$
(1)
$$ 0=\frac{dFPG}{dt}=\frac{Ki{n}_{FPG}}{E{F}_S \cdot I{S}_0\cdot FSI}-FPG \cdot Kou{t}_{FPG}\cdot E{F}_{Urine} $$
(2)

Rearranging Eq.2 for FPG0 (Note: KinFPG / KoutFPG = KIOG and EFUrine, EFS, EFB = 1 at baseline)

$$ FP{G}_0=\frac{KIOG}{I{S}_0\cdot FSI} $$
(3)

Substitute FPG from Eq.3 back to Eq. 1

$$ 0=B{C}_0 \cdot \left(\frac{KIOG}{I{S}_0\cdot FSI}-3.5\right)\cdot Ki{n}_{FSI}-FSI\cdot Kou{t}_{FSI} $$
(4)

Expand the brackets (Note: KinFSI/KoutFSI = KIOI)

$$ 0=\frac{B{C}_0\cdot KIOI\cdot KIOG}{I{S}_0\cdot FSI}-3.5\cdot B{C}_0\cdot KIOI-FSI $$
(5)

Rearranging to get the quadratic equation form ax 2 + bx + c = 0

$$ \begin{array}{l}0=FS{I}^2+3.5\cdot B{C}_0\cdot KIOI\cdot FSI-\frac{B{C}_0\cdot KIOI\cdot KIOG}{I{S}_0}\\ {}a = 1\\ {}b=3.5\cdot B{C}_0\cdot KIOI\\ {}c=-\frac{B{C}_0\cdot KIOI\cdot KIOG}{I{S}_0}\end{array} $$
(6)

FSI0 can now be solved using the quadratic formula:

$$ FS{I}_0=\frac{-b\pm \sqrt{b^2-4ac}}{2a} $$

Note: only the positive root is of interest.

Substitute FSI0 back into Eq 3 to calculate FPG0:

$$ FP{G}_0=\frac{KIOG}{I{S}_0\cdot FS{I}_0} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choy, S., de Winter, W., Karlsson, M.O. et al. Modeling the Disease Progression from Healthy to Overt Diabetes in ZDSD Rats. AAPS J 18, 1203–1212 (2016). https://doi.org/10.1208/s12248-016-9931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9931-0

KEY WORDS

Navigation