Advertisement

The AAPS Journal

, Volume 19, Issue 3, pp 607–618 | Cite as

Application of Pharmacokinetics and Pharmacodynamics in Product Life Cycle Management. A Case Study with a Carbidopa-Levodopa Extended-Release Formulation

  • Nishit B. ModiEmail author
Review Article Theme: Pharmaceutical Lifecycle Management: A Focus on Product and Platform Innovation
Part of the following topical collections:
  1. Theme: Pharmaceutical Lifecycle Management: A Focus on Product and Platform Innovation

Abstract

Increasing costs in discovering and developing new molecular entities and the continuing debate on limited company pipelines mean that pharmaceutical companies are under significant pressure to maximize the value of approved products. Life cycle management in the context of drug development comprises activities to maximize the effective life of a product. Life cycle approaches can involve new formulations, new routes of delivery, new indications or expansion of the population for whom the product is indicated, or development of combination products. Life cycle management may provide an opportunity to improve upon the current product through enhanced efficacy or reduced side effects and could expand the therapeutic market for the product. Successful life cycle management may include the potential for superior efficacy, improved tolerability, or a better prescriber or patient acceptance. Unlike generic products where bioequivalence to an innovator product may be sufficient for drug approval, life cycle management typically requires a series of studies to characterize the value of the product. This review summarizes key considerations in identifying product candidates that may be suitable for life cycle management and discusses the application of pharmacokinetics and pharmacodynamics in developing new products using a life cycle management approach. Examples and a case study to illustrate how pharmacokinetics and pharmacodynamics contributed to the selection of dosing regimens, demonstration of an improved therapeutic effect, or regulatory approval of an improved product label are presented.

KEY WORDS

carbidopa-levodopa extended-release fixed-combination products life cycle management pharmacodynamics pharmacokinetics 

Supplementary material

12248_2016_32_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)
12248_2016_32_MOESM2_ESM.docx (12 kb)
ESM 2 (DOCX 11 kb)
12248_2016_32_MOESM3_ESM.docx (11 kb)
ESM 3 (DOCX 10 kb)

References

  1. 1.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–14. doi: 10.1038/nrd3078.PubMedGoogle Scholar
  2. 2.
    Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10:428–38. doi: 10.1038/nrd3405.CrossRefPubMedGoogle Scholar
  3. 3.
    Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200. doi: 10.1038/nrd3681.CrossRefPubMedGoogle Scholar
  4. 4.
    Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today. 2012;17:1088–102. doi: 10.1016/j.drudis.2012.05.007.CrossRefPubMedGoogle Scholar
  5. 5.
    Dhankhar A, Evers M, Møller M. Escaping the sword of Damocles: toward a new future for pharmaceutical R&D. McKinsey perspectives on drug and device R&D 2012. Accessed 3 June 2016.Google Scholar
  6. 6.
    Novac N. Challenges and opportunities in drug repositioning. Trends in Pharmacol Sci. 2013;34:267–72. doi: 10.1016/j.tips.2013.03.004.CrossRefGoogle Scholar
  7. 7.
    Fleming E, Ma P. Drug life-cycle technologies. Nat Rev Drug Discov. 2002;1:751–2.CrossRefPubMedGoogle Scholar
  8. 8.
    Gudiksen M, Fleming E, Furstenthal L, Ma P. What drives success for specialty pharmaceuticals? Nat Rev Drug Discov. 2008;7:563–7. doi: 10.1038/nrd2594.CrossRefPubMedGoogle Scholar
  9. 9.
    Vermeire E, Hearnshaw H, Van Royen P, Denekens J. Patient adherence to treatment: three decades of research. A comprehensive review. J Clin Pharm Ther. 2001;26:331–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Coleman CI, Limone B, Sobieraj DM, Lee S, Roberts MS, Kaur R, et al. Dosing frequency and medication adherence in chronic disease. J Manag Care Pharm. 2012;18:527–39.PubMedGoogle Scholar
  11. 11.
    Saini SD, Schoenfeld P, Kaulback K, Dubinsky MC. Effect of medication dosing frequency on adherence in chronic diseases. Am J Manag Care. 2009;15:e22–33.PubMedGoogle Scholar
  12. 12.
    U. S Department of Health and Human Services. Applications covered by Section 505(b)(2). Guidance for Industry. October 1999. Accessed 4 June 2016.Google Scholar
  13. 13.
    Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. http://ec.europa.eu/health/files/eudralex/vol1/dir_2001_83_consol_2012/dir_2001_83_cons_2012_en.pdf. Accessed 2 July 2016.
  14. 14.
    Vogel AM. Hybrid or mixed marketing authorization application in the European Union: not a trivial decision in new development programs for established drugs. Drug Inf J. 2012;46:479–84. doi: 10.1177/0092861512443748.Google Scholar
  15. 15.
    U. S Department of Health and Human Services. Nonclinical safety evaluation of reformulated drug products and products intended for administration by an alternate route. Guidance for Industry and Review Staff. October 2015. Accessed 4 June 2016.Google Scholar
  16. 16.
    Committee for Medicinal Products for Human Use (CPMP). Guideline on the non-clinical documentation for mixed marketing authorisation applications. London: European Medicines Agency; 2005. CPMP/SWP/799/95. Accessed 2 July 2016.Google Scholar
  17. 17.
    Cundy KC, Sastry S, Luo W, Zou J, Moors TL, Canafax DM. Clinical pharmacokinetics of XP13512, a novel transported prodrug of gabapentin. J Clin Pharmacol. 2008;48:1378–88. doi: 10.1177/0091270008322909.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen C. Meta-analyses of dose-exposure relationships for gabapentin following oral administration of gabapentin and gabapentin enacarbil. Eur J Clin Pharmacol. 2013;69:1809–17. doi: 10.1007/s00228-013-1545-1.CrossRefPubMedGoogle Scholar
  19. 19.
    EFPIA MID Workgroup, Marshall SF, Burghaus R, Cossom V, Cheung SYA, Chenel M, et al. Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharma Syst Pharmacol. 2016;5:93–122. doi: 10.1002/psp4.12049.CrossRefGoogle Scholar
  20. 20.
    Miller R, Ewy W, Corrigan BW, Ouellet D, Hermann D, Kowalski KG, et al. How modeling and simulation have enhanced decision making in new drug development. J Pharmacokin Pharmacodyn. 2005;32:185–97.CrossRefGoogle Scholar
  21. 21.
    Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, et al. Model-based drug development. Clin Pharm Ther. 2007;82:21–32. doi: 10.1038/sj.clpt.6100235.CrossRefGoogle Scholar
  22. 22.
    Guidance for Industry: general considerations for pediatric pharmacokinetic studies for drugs and biologic products. U.S. Department of Health and Human Services November 1998 (DRAFT)Google Scholar
  23. 23.
    Guidance for Industry: general clinical pharmacology considerations for pediatric studies for drugs and biological products. U.S. Department of Health and Human Services December 2014 (DRAFT)Google Scholar
  24. 24.
    Reflection paper on extrapolation of efficacy and safety in paediatric medicine development European Medicines Agency 1 April 2016 EMA/199678/2016.Google Scholar
  25. 25.
    Dunne J, Rodrigues WJ, Murphy MD, Beasley N, Burckart GJ, Filie JD, et al. Extrapolation of adult data and other data in pediatric drug-development programs. Pediatrics. 2011;128:e1242–9. doi: 10.1542/peds.2010-3487.CrossRefPubMedGoogle Scholar
  26. 26.
    Nedelman JR, Rubin DR, Sheiner LB. Diagnostics for confounding in PK/PD models for oxcarbazepine. Stats Med. 2007;26:290–308.CrossRefGoogle Scholar
  27. 27.
    Girgis IG, Nandy P, Nye JS, Ford L, Mohanty S, Wang S, et al. Pharmacokinetic-pharmacodynamic assessment of topiramate dosing regimens for children with epilepsy 2 to <10 years of age. Epilepsia. 2010;51:1954–62. doi: 10.1111/j.1528-1167.2010.02598.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Nielsen JC, Tolbert D, Patel M, Kowalski KG, Wesche DL. Vigabatrin pediatric dosing information for refractory complex partial seizures: results from a population dose-response analysis. Epilepsia. 2014;55:e134–8. doi: 10.1111/epi.12825.CrossRefPubMedGoogle Scholar
  29. 29.
    Nielsen JC, Hutmacher MM, Wesche DL, Tolbert D, Patel M, Kowalski KG. Population dose-response analysis of daily seizure count following vigabatrin therapy in adult and pediatric patients with refractory complex partial seizures. J Clin Pharm. 2014;55:81–92. doi: 10.1002/jcph.378.CrossRefGoogle Scholar
  30. 30.
    Mehrotra N, Bhattaram A, Earp JC, Florian J, Krudys K, Lee JE, et al. Role of quantitative clinical pharmacology in pediatric approval and labeling. Drug Metab Dispos. 2016;44:924–33. doi: 10.1124/dmd.116.069559.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee JY, Garnett CE, Gobburu JV, Bhattaram VA, Brar S, Earp JC, et al. Impact of pharmacometric analyses on new drug approval and labelling decisions: a review of 198 submissions between 2000 and 2008. Clin Pharmacokinet. 2011;50:627–35. doi: 10.2165/11593210-000000000-00000.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Arnum P. Adding up the opportunities in combination drugs. Pharm Technol. 2012;36:40–7.Google Scholar
  33. 33.
    U. S Department of Health and Human Services. New chemical entity exclusivity determinations for certain fixed-combination drug products. Guidance for Industry. October 2014.Google Scholar
  34. 34.
    Bucci KK, Possidente CJ. Combination-drug products: benefits or burden to patients? Am J Health Syst Pharm. 2006;63:1654–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Wertheimer AI, Morrison A. Combination drugs: innovation in pharmacotherapy. P&T. 2002;27:44–9.Google Scholar
  36. 36.
    Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology. 2009;72 suppl 4:S1–S136. doi: 10.1212/WNL.0b013e3181a1d44c.CrossRefPubMedGoogle Scholar
  37. 37.
    Verhagen Metman L, Stover N, Chen C, Cowles VE, Sweeney M. Gastroretentive carbidopa/levodopa, DM-1992, for the treatment of advanced Parkinson’s disease. Mov Disord. 2015;30:1222–8. doi: 10.1002/mds.26219.CrossRefPubMedGoogle Scholar
  38. 38.
    Poewe W, Antonini A. Novel formulations and modes of delivery of levodopa. Mov Disord. 2015;30:114–20. doi: 10.1002/mds.26078.CrossRefPubMedGoogle Scholar
  39. 39.
    Shoulson I, Glaubiger GA, Chase TN. On-off response. Clinical and biochemical correlations during oral and intravenous levodopa administration in parkinsonian patients. Neurology. 1975;25:1144–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Obeso JA, Rodriguez-Oroz MC, Chana P, Lera G, Rodriguez M, Olanow CW. The evolution and origin of motor complications in Parkinson’s disease. Neurology. 2000;55 suppl 4:S13–20.PubMedGoogle Scholar
  41. 41.
    Poewe W, Antonini A, Zijlmans JCM, Burkhard PR, Vingerhoets F. Levodopa in the treatment of Parkinson’s disease: an old drug still going strong. Clin Interv Aging. 2010;5:229–38.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Stocchi F, Vacca L, Ruggieri S, Olanow CW. Intermittent vs continuous levodopa administrations in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch Neurol. 2005;62:905–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Kurlan R, Nutt JG, Woodward WR, Rothfield K, Lichter D, Miller C, et al. Duodenal and gastric delivery of levodopa in parkinsonism. Ann Neurol. 1998;23:589–95.CrossRefGoogle Scholar
  44. 44.
    Stocchi F, Ruggieri S, Monge A, Nordera G, Bolner P, Viselli F, et al. Clinical efficacy of single morning doses of different levodopa formulations. Clin Neuropharmacol. 1994;17 Suppl 3:S16–20.CrossRefGoogle Scholar
  45. 45.
    Feldman RG, Mosbach PA, Kelly MR, Thomas CA, Saint Hilaire MH. Double-blind comparison of standard Sinemet and Sinemet CR in patients with mild-to-moderate Parkinson’s disease. Neurology. 1989;39 Suppl 2:96–101.PubMedGoogle Scholar
  46. 46.
    Wolters EC, Horstink MW, Roos RA, Jansen EN. Clinical efficacy of Sinemet CR 50/200 versus Sinemet 25/100 in patients with fluctuating Parkinson’s disease. An open, and a double-blind, double-dummy, multicenter treatment evaluation. The Dutch Sinemet CR Study Group. Clin Neurol Neurosurg. 1992;94:205–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Hsu A, Yao HM, Gupta S, Modi NB. Comparison of the pharmacokinetics of an oral extended-release capsule formulation of carbidopa-levodopa (IPX066) with immediate-release carbidopa-levodopa (Sinemet®), sustained-release carbidopa-levodopa (Simenet® CR), and carbidopa-levodopa-entacapone (Stalevo®). J Clin Pharmacol. 2015;55:995–1003. doi: 10.1002/jcph.514.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hauser RA, Ellenbogen AL, Metman LV, Hsu A, O’Connell MJ, Modi NB, et al. Crossover comparison of IPX066 and a standard levodopa formulation in advanced Parkinson’s disease. Mov Disord. 2011;26:2246–52. doi: 10.1002/mds.23861.CrossRefPubMedGoogle Scholar
  49. 49.
    Yao HM, Hsu A, Gupta S, Modi NB. Clinical pharmacokinetics of IPX066: evaluation of dose proportionality and effect of food in healthy volunteers. Clin Neuropharmacol. 2016;39:10–7. doi: 10.1097/WNF.0000000000000126.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mittur A, Gupta S, Modi NB. Pharmacokinetics of RYTARY®, an extended-release capsule formulation of carbidopa-levodopa. Clin Pharmacokinet. 2016 (submitted).Google Scholar
  51. 51.
    Othman AA, Chatamra K, Mohamed ME, Dutta S, Benesh J, Yanagawa M, et al. Jejunal infusion of levodopa-carbidopa intestinal gel versus oral administration of levodopa-carbidopa tablets in Japanese subjects with advanced Parkinson’s disease: pharmacokinetics and pilot efficacy and safety. Clin Pharmacokinet. 2015;54:975–84. doi: 10.1007/s40262-015-0265-3.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nyholm D, Odin P, Johansson A, Chatamra K, Locke C, Dutta S, et al. Pharmacokinetics of levodopa, carbidopa, and 3-O-methyldopa following 16-hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease patients. AAPS J. 2013;15:316–23. doi: 10.1208/s12248-012-9439-1.CrossRefPubMedGoogle Scholar
  53. 53.
    Freed MI, Moore JA, Batycky R, Tia DF. Pharmacokinetics (PK) following inhaled levodopa delivery with CVT-301: rapid augmentation of systemic levodopa (LD) levels and improvement in motor function in PD patients with motor fluctuations. Mov Disord. 2014;29 Suppl 1:S239.Google Scholar
  54. 54.
    LeWitt PA, Huff FJ, Hauser RA, Chen D, Lissin D, Zomorodi K, et al. Double-blind study of the actively transported levodopa prodrug XP21279 in Parkinson’s disease. Mov Disord. 2014;29:75–82. doi: 10.1002/mds.25742.CrossRefPubMedGoogle Scholar
  55. 55.
    LeWitt PA, Jenning D, Lyons KE, Pahwa R, Rabinowicz AL, Wang J, et al. Pharmacokinetic-pharmacodynamic crossover comparison of two levodopa extension strategies. Mov Disord. 2009;24:1319–24.CrossRefPubMedGoogle Scholar
  56. 56.
    Leppik IE, Hovinga CA. Extended-release antiepileptic drugs: a comparison of pharmacokinetic parameters relative to original immediate-release formulations. Epilepsia. 2013;54:28–35. doi: 10.1111/epi.12043.CrossRefPubMedGoogle Scholar
  57. 57.
    Mao Z, Hsu A, Gupta S, Modi NB. Population pharmacodynamics of IPX066: an oral extended-release capsule formulation of carbidopa-levodopa, and immediate-release carbidopa-levodopa in patients with advanced Parkinson’s disease. J Clin Pharmacol. 2013;53:523–31. doi: 10.1002/jcph.6.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12:346–56. doi: 10.1016/S1474-4422(13)70025-5.CrossRefPubMedGoogle Scholar
  59. 59.
    Fahn S, Elton RL. UPDRS program members. Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB, editors. Recent developments in Parkinson’s disease, vol. 2. Florham Park: Macmillan Healthcare Information; 1987. p. 153–63.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.Impax Specialty Pharma, a division of Impax Laboratories, Inc.HaywardUSA

Personalised recommendations