Epigenetic CpG Methylation of the Promoter and Reactivation of the Expression of GSTP1 by Astaxanthin in Human Prostate LNCaP Cells


Astaxanthin (AST), a red dietary carotenoid, has synergistic antioxidant effects with polyunsaturated fatty acids at low concentrations via Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2)/antioxidant response element (ARE) signaling. In addition, chromatin remodeling and DNA methylation-based gene silencing represent a common mechanism in prostate carcinogenesis and tumor progression from normal cells to pre-initiated cells and ultimately to invasive carcinoma. Therefore, the control of epigenetic modification and the transcriptional/translational control of the activation of Nrf2 and Nrf2-target genes, including glutathione S-transferases (GSTs), appear to be an important mechanism that protects cells against injuries from oxidative stress and cancer development. In this study, we aim to investigate the role of AST in reactivating the expression of Nrf2 and GSTP1 through epigenetic modification in human prostate LNCaP cells. Treatment with AST in human LNCaP cells reduced the methylation of 21 CpG sites of the GSTP1 CpG island but did not affect the three CpG sites of the Nrf2 promoter region. AST induced the mRNA expression and protein expression of both Nrf2 and GSTP1. It also increased the mRNA expression of NQO1 in sh-mock LNCaP cells but not in sh-SETD7 LNCaP cells. Furthermore, AST reduced the protein expression of DNMT3b and significantly inhibited DNMT and HDAC activities in vitro. Taken together, these results suggest that AST decreased the methylation status of the GSTP1, and these epigenetic modifying effects may originate from the decreasing activities of epigenetic modification enzymes, contributing to the overall beneficial health effects of AST.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

    Article  PubMed  Google Scholar 

  2. 2.

    Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, et al. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci. 2012;103(5):913–20.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Jhaveri MS, Morrow CS. Methylation-mediated regulation of the glutathione S-transferase P1 gene in human breast cancer cells. Gene. 1998;210(1):1–7.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58(20):4515–8.

    CAS  PubMed  Google Scholar 

  5. 5.

    Saxena A, Dhillon VS, Shahid M, Khalil HS, Rani M, Prasad DT, et al. GSTP1 methylation and polymorphism increase the risk of breast cancer and the effects of diet and lifestyle in breast cancer patients. Exp Ther Med. 2012;4(6):1097–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Arai T, Miyoshi Y, Kim SJ, Taguchi T, Tamaki Y, Noguchi S. Association of GSTP1 CpG islands hypermethylation with poor prognosis in human breast cancers. Breast Cancer Res Treat. 2006;100(2):169–76.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Krassenstein R, Sauter E, Dulaimi E, Battagli C, Ehya H, Klein-Szanto A, et al. Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(1 Pt 1):28–32.

    CAS  Article  Google Scholar 

  8. 8.

    Pongtheerat T, Pakdeethai S, Purisa W, Chariyalertsak S, Petmitr S. Promoter methylation and genetic polymorphism of glutathione S-transferase P1 gene (GSTP1) in Thai breast-cancer patients. Asian Pac J Cancer Prev: APJCP. 2011;12(10):2731–4.

    PubMed  Google Scholar 

  9. 9.

    Singal R, van Wert J, Bashambu M. Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells. Cancer Res. 2001;61(12):4820–6.

    CAS  PubMed  Google Scholar 

  10. 10.

    Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994;91(24):11733–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kong AN, Yu R, Lei W, Mandlekar S, Tan TH, Ucker DS. Differential activation of MAPK and ICE/Ced-3 protease in chemical-induced apoptosis. The role of oxidative stress in the regulation of mitogen-activated protein kinases (MAPKs) leading to gene expression and survival or activation of caspases leading to apoptosis. Restor Neurol Neurosci. 1998;12(2–3):63–70.

    CAS  PubMed  Google Scholar 

  12. 12.

    Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong AN. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther. 2013;137(2):153–71.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34(6):340–6.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res. 2008;1(3):187–91.

    CAS  Article  Google Scholar 

  15. 15.

    Saw CL, Yang AY, Huang MT, Liu Y, Lee JH, Khor TO, et al. Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages. Cell Biosci. 2014;4:39.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Saw CL, Huang MT, Liu Y, Khor TO, Conney AH, Kong AN. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog. 2011;50(6):479–86.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006;66(16):8293–6.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM. Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett. 2006;236(1):72–9.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Frohlich DA, McCabe MT, Arnold RS, Day ML. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene. 2008;27(31):4353–62.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem. 2004;91(3):540–52.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate. 2012;72(11):1248–61.

    Article  PubMed  Google Scholar 

  22. 22.

    Tokumaru Y, Harden SV, Sun DI, Yamashita K, Epstein JI, Sidransky D. Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(16):5518–22.

    CAS  Article  Google Scholar 

  23. 23.

    Stewart GD, Van Neste L, Delvenne P, Delree P, Delga A, McNeill SA, et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 2013;189(3):1110–6.

    Article  PubMed  Google Scholar 

  24. 24.

    Peng J, Yuan JP, Wang JH. Effect of diets supplemented with different sources of astaxanthin on the gonad of the sea urchin Anthocidaris crassispina. Nutrients. 2012;4(8):922–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, et al. Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal. 2003;5(1):139–44.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, et al. Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb. 2000;7(4):216–22.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kobayashi M. In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol. 2000;54(4):550–5.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yasui Y, Hosokawa M, Mikami N, Miyashita K, Tanaka T. Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem Biol Interact. 2011;193(1):79–87.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Nagendraprabhu P, Sudhandiran G. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Investig New Drugs. 2011;29(2):207–24.

    CAS  Article  Google Scholar 

  30. 30.

    Jyonouchi H, Sun S, Iijima K, Gross MD. Antitumor activity of astaxanthin and its mode of action. Nutr Cancer. 2000;36(1):59–65.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kang JO, Kim SJ, Kim H. Effect of astaxanthin on the hepatotoxicity, lipid peroxidation and antioxidative enzymes in the liver of CCl4-treated rats. Methods Find Exp Clin Pharmacol. 2001;23(2):79–84.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep Commun Free Radic Res. 2002;7(5):290–3.

    CAS  Article  Google Scholar 

  33. 33.

    Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, et al. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest Ophthalmol Vis Sci. 2003;44(6):2694–701.

    Article  PubMed  Google Scholar 

  34. 34.

    Yuan JP, Peng J, Yin K, Wang JH. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55(1):150–65.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Lee JJ, Kong M, Ayers GD, Lotan R. Interaction index and different methods for determining drug interaction in combination therapy. J Biopharm Stat. 2007;17(3):461–80.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Saw CL, Yang AY, Guo Y, Kong AN. Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway. Food Chem Toxicol. 2013;62:869–75.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Li R, Wu H, Zhuo WW, Mao QF, Lan H, Zhang Y, et al. Astaxanthin normalizes epigenetic modifications of bovine somatic cell cloned embryos and decreases the generation of lipid peroxidation. Reprod Domest Anim = Zuchthygiene. 2015;50(5):793–9.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1):e8579.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Khor TO, Fuentes F, Shu L, Paredes-Gonzalez X, Yang AY, Liu Y, et al. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev Res. 2014;7(12):1186–97.

    CAS  Article  Google Scholar 

  40. 40.

    Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427–31.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Hun Lee J, Shu L, Fuentes F, Su ZY, Tony Kong AN. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J Tradit Complement Med. 2013;3(1):69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci: CMLS. 2004;61(19–20):2571–87.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell. 2001;8(6):1207–17.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A. 2009;106(13):5076–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8(6):1409–20.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Khor TO, Yu S, Kong AN. Dietary cancer chemopreventive agents—targeting inflammation and Nrf2 signaling pathway. Planta Med. 2008;74(13):1540–7.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Shin JW, Ohnishi K, Murakami A, Lee JS, Kundu JK, Na HK, et al. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev Res. 2011;4(6):860–70.

    CAS  Article  Google Scholar 

  48. 48.

    Mavis CK, Morey Kinney SR, Foster BA, Karpf AR. Expression level and DNA methylation status of glutathione-S-transferase genes in normal murine prostate and TRAMP tumors. Prostate. 2009;69(12):1312–24.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, et al. Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev Res. 2014;7(3):319–29.

    CAS  Article  Google Scholar 

  50. 50.

    Chen Y, Inoyama D, Kong AN, Beamer LJ, Hu L. Kinetic analyses of Keap1-Nrf2 interaction and determination of the minimal Nrf2 peptide sequence required for Keap1 binding using surface plasmon resonance. Chem Biol Drug Des. 2011;78(6):1014–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol. 2011;82(9):1073–8.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 2009;30(4):662–70.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Rennie PS, Nelson CC. Epigenetic mechanisms for progression of prostate cancer. Cancer Metastasis Rev. 1998;17(4):401–9.

    CAS  Article  PubMed  Google Scholar 

Download references


This study was supported in part by institutional funds and by R01-CA118947 and R01-CA152826 from the National Cancer Institute (NCI), ​R01 AT009152 from the National Center for Complementary and Integrative Health (NCCIH), and R01AT007065 from the National Center for Complementary and Alternative Medicines (NCCAM) and the Office of Dietary Supplements (ODS). We thank all the members in Dr. Ah-Ng Tony Kong’s lab for their helpful discussion in the preparation of this manuscript.

Author information



Corresponding author

Correspondence to Ah-Ng Kong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Guest Editors: Ah-Ng Tony Kong and Chi Chen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fuentes, F., Shu, L. et al. Epigenetic CpG Methylation of the Promoter and Reactivation of the Expression of GSTP1 by Astaxanthin in Human Prostate LNCaP Cells. AAPS J 19, 421–430 (2017). https://doi.org/10.1208/s12248-016-0016-x

Download citation


  • astaxanthin
  • DNA methylation
  • epigenetics
  • GSTP1
  • prostate cancer