Skip to main content

Advertisement

Log in

Spray-Dried Thiolated Chitosan-Coated Sodium Alginate Multilayer Microparticles for Vaginal HIV Microbicide Delivery

  • Research Article
  • Theme: Next Generation Formulation Design: Innovations in Material Selection and Functionality
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

It is hypothesized that novel thiolated chitosan-coated multilayer microparticles (MPs) with enhanced drug loading are more mucoadhesive than uncoated MPs and safe in vivo for vaginal delivery of topical anti-HIV microbicide. Formulation optimization is achieved through a custom experimental design and the alginate (AG) MPs cores are prepared using the spray drying method. The optimal MPs are then coated with the thiolated chitosan (TCS) using a layer-by-layer method. The morphological analysis, in situ drug payload, in vitro drug release profile, and mucoadhesion potential of the MPs are carried out using scanning electron microscopy, solid-state 31P NMR spectroscopy, UV spectroscopy, fluorescence imaging and periodic acid Schiff method, respectively. The cytotoxicity and preclinical safety of MPs are assessed on human vaginal (VK2/E6E7) and endocervical (End1/E6E7) epithelial cell lines and in female C57BL/6 mice, respectively. The results show that the MPs are successfully formulated with an average diameter ranging from 2 to 3 μm with a drug loading of 7–12% w/w. The drug release profile of these MPs primarily follows the Baker-Lonsdale and Korsmeyer-Peppas models. The MPs exhibit high mucoadhesion (20–50 folds) compared to native AGMPs. The multilayer MPs are noncytotoxic. Histological and immunochemical analysis of the mice genital tract shows neither signs of damage nor inflammatory cell infiltrate. These data highlight the potential use of TCS-coated AG-based multilayer MPs templates for the topical vaginal delivery of anti-HIV/AIDS microbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poelvoorde N, Verstraelen H, Verhelst R, Saerens B, De Backer E, dos Santos Santiago GL, et al. In vivo evaluation of the vaginal distribution and retention of a multi-particulate pellet formulation. Eur J Pharm Biopharm. 2009;73(2):280–4.

    Article  CAS  PubMed  Google Scholar 

  2. Alukda D, Sturgis T, Youan BB. Formulation of tenofovir-loaded functionalized solid lipid nanoparticles intended for HIV prevention. J Pharm Sci. 2011;100(8):3345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agrahari V, Zhang C, Zhang T, Li W, Gounev TK, Oyler NA, et al. Hyaluronidase-sensitive nanoparticle templates for triggered release of HIV/AIDS microbicide in vitro. AAPS J. 2014;16(2):181–93.

    Article  CAS  PubMed  Google Scholar 

  4. Meng J, Sturgis TF, Youan BB. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44(1–2):57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meng J, Zhang T, Agrahari V, Ezoulin MJ, Youan BB. Comparative biophysical properties of tenofovir-loaded, thiolated and nonthiolated chitosan nanoparticles intended for HIV prevention. Nanomedicine. 2014;9(11):1595–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang T, Zhang C, Agrahari V, Murowchick JB, Oyler NA, Youan BB. Spray drying tenofovir loaded mucoadhesive and pH-sensitive microspheres intended for HIV prevention. Antivir Res. 2013;97(3):334–46.

    Article  CAS  PubMed  Google Scholar 

  7. Bilancetti L, Poncelet D, Loisel C, Mazzitelli S, Nastruzzi C. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating. AAPS PharmSciTech. 2010;11(3):1257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li X, Anton N, Arpagaus C, Belleteix F, Vandamme TF. Nanoparticles by spray drying using innovative new technology: the Buchi nano spray dryer B-90. J Control Release. 2010;147(2):304–10.

    Article  CAS  PubMed  Google Scholar 

  9. Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv. 2010;7(6):705–19.

    Article  CAS  PubMed  Google Scholar 

  10. Leitner VM, Walker GF, Bernkop-Schnurch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  11. Meng J, Agrahari V, Ezoulin M, Zhang C, Purohit S, Moltenic A, et al. Tenofovir containing thiolated chitosan core/shell nanofibers: in vitro and in vivo evaluations. Mol Pharmaceutics. 2016. doi:10.1021/acs.molpharmaceut.6b00739.

  12. Li X, Kong X, Shi S, Zheng X, Guo G, Wei Y, et al. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol. 2008;8:89–100.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shinde UA, Nagarsenker MS. Characterization of gelatin-sodium alginate complex coacervation system. Indian J Pharm Sci. 2009;71(3):313–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. D’Souza SS, DeLuca PP. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech. 2005;6(2):E323–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sassi AB, Isaacs CE, Moncla BJ, Gupta P, Hillier SL, Rohan LC. Effects of physiological fluids on physical-chemical characteristics and activity of topical vaginal microbicide products. J Pharm Sci. 2008;97(8):3123–39.

    Article  CAS  PubMed  Google Scholar 

  16. Owen DH, Katz DF. A vaginal fluid simulant. Contraception. 1999;59(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Han HK, Shin HJ, Ha DH. Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur J Pharm Sci. 2012;46(5):500–7.

    Article  CAS  PubMed  Google Scholar 

  19. Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014(6):655–8.

    PubMed  Google Scholar 

  20. Catalone BJ, Kish-Catalone TM, Budgeon LR, Neely EB, Ferguson M, Krebs FC, et al. Mouse model of cervicovaginal toxicity and inflammation for preclinical evaluation of topical vaginal microbicides. Antimicrob Agents Chemother. 2004;48(5):1837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bei D, Marszalek J, Youan BB. Formulation of dacarbazine-loaded cubosomes—part I: influence of formulation variables. AAPS PharmSciTech. 2009;10(3):1032–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh SK, Banala VT, Gupta GK, Verma A, Shukla R, Pawar VK, et al. Development of docetaxel nanocapsules for improving in vitro cytotoxicity and cellular uptake in MCF-7 cells. Drug Dev Ind Pharm. 2015;41:1759–68.

  23. zur Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur J Pharm Biopharm. 1998;45(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  24. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  25. Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology. 2014;95(3):631–6.

    Article  PubMed  Google Scholar 

  26. Mlisana K, Naicker N, Werner L, Roberts L, van Loggerenberg F, Baxter C, et al. Symptomatic vaginal discharge is a poor predictor of sexually transmitted infections and genital tract inflammation in high-risk women in South Africa. J Infect Dis. 2012;206(1):6–14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heng PW, Chan LW, Tang ES. Use of swirling airflow to enhance coating performance of bottom spray fluid bed coaters. Int J Pharm. 2006;327(1–2):26–35.

    Article  CAS  PubMed  Google Scholar 

  28. Masters K. Spray-air contact, particle formation and drying. Spray drying in practice. Denmark: SprayDryConsult Intl. ApS; 2002. p. 129–191.

  29. Maury M, Murphy K, Kumar S, Shi L, Lee G. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59(3):565–73.

    Article  CAS  PubMed  Google Scholar 

  30. Chapter 6. Viscosity. In: Sperling LH, editor. Introduction to physical polymer science. 4th ed 2006. p. 77–87.

  31. Hamdy S, Haddadi A, Ghotbi Z, Hung RW, Lavasanifar A. Part I: targeted particles for cancer immunotherapy. Curr Drug Deliv. 2011;8(3):261–73.

    Article  CAS  PubMed  Google Scholar 

  32. Hung RW, Hamdy S, Haddadi A, Ghotbi Z, Lavasanifar A. Part II: targeted particles for imaging of anticancer immune responses. Curr Drug Deliv. 2011;8(3):274–81.

    Article  CAS  PubMed  Google Scholar 

  33. LeClair DA, Cranston ED, Xing Z, Thompson MR. Optimization of spray drying conditions for yield, particle size and biological activity of thermally stable viral vectors. Pharm Res. 2016;33(11):2763–76.

    Article  CAS  PubMed  Google Scholar 

  34. Kanojia G, Willems GJ, Frijlink HW, Kersten GF, Soema PC, Amorij JP. A design of experiment approach to predict product and process parameters for a spray dried influenza vaccine. Int J Pharm. 2016;511(2):1098–111.

    Article  CAS  PubMed  Google Scholar 

  35. Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Funami T, Williams PA, et al. Multiple steps and critical behaviors of the binding of calcium to alginate. J Phys Chem B. 2007;111(10):2456–62.

    Article  CAS  PubMed  Google Scholar 

  36. Lee WA, He GX, Eisenberg E, Cihlar T, Swaminathan S, Mulato A, et al. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob Agents Chemother. 2005;49(5):1898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chantler E, Debruyne E. Factors regulating the changes in cervical mucus in different hormonal states. Adv Exp Med Biol. 1977;89:131–41.

    Article  CAS  PubMed  Google Scholar 

  38. Gipson IK, Ho SB, Spurr-Michaud SJ, Tisdale AS, Zhan Q, Torlakovic E, et al. Mucin genes expressed by human female reproductive tract epithelia. Biol Reprod. 1997;56(4):999–1011.

    Article  CAS  PubMed  Google Scholar 

  39. Clift AF. Early studies on the rheology of cervical mucus. Am J Obstet Gynecol. 1979;134(7):829–32.

    Article  CAS  PubMed  Google Scholar 

  40. Godley MJ. Quantitation of vaginal discharge in healthy volunteers. Br J Obstet Gynaecol. 1985;92(7):739–42.

    Article  CAS  PubMed  Google Scholar 

  41. Bogataj M, Vovk T, Kerec M, Dimnik A, Grabnar I, Mrhar A. The correlation between zeta potential and mucoadhesion strength on pig vesical mucosa. Biol Pharm Bull. 2003;26(5):743–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work presented was supported by Award Number R01AI087304 from the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. The authors would like to thank Dr. Vladimir Dusevich (Director, Electron Microscopy Facility, School of Dentistry, University of Missouri-Kansas City, MO) for the electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Botti C. Youan.

Additional information

Guest Editors: Otilia M. Koo, Panayiotis P. Constantinides, Lavinia M. Lewis, and Joseph Reo

Jianing Meng and Vivek Agrahari contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Agrahari, V., Ezoulin, M.J. et al. Spray-Dried Thiolated Chitosan-Coated Sodium Alginate Multilayer Microparticles for Vaginal HIV Microbicide Delivery. AAPS J 19, 692–702 (2017). https://doi.org/10.1208/s12248-016-0007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-0007-y

KEY WORDS

Navigation