Skip to main content

Advertisement

Log in

Role of Organic Anion-Transporting Polypeptides (OATPs) in Cancer Therapy

  • Review Article
  • Theme: Transporters and Cancer Therapy
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The superfamily of organic anion-transporting polypeptides (OATPs, gene symbol SLCO) includes important transporters handling a variety of endogenous and xenobiotic substrates. Currently, 11 human OATPs are known and their substrates include endogenous hormones and their conjugates, anticancer drugs, and imaging agents. The contribution of OATPs to the in vivo disposition of these substrates has been extensively investigated. An accumulating body of evidence also indicates that the expression of some OATPs may be up- or downregulated in several types of cancers, suggesting potential pathogenic roles during the development and progression of cancer. Given that the role of OATPs in handling cancer therapeutics has been already covered by several excellent reviews, this review will focus on the recent progresses on the topic, in particular the role of OATPs in the disposition of anticancer drugs, the impact of OATP genetic variations on the function of OATPs, and the OATPs differentially expressed in cancer and their potential roles in cancer development, progression, and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447(5):653–65. doi:10.1007/s00424-003-1168-y.

    Article  CAS  PubMed  Google Scholar 

  2. Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999;274(24):17159–63.

    Article  CAS  PubMed  Google Scholar 

  3. Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001;120(7):1689–99.

    Article  CAS  PubMed  Google Scholar 

  4. Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, et al. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res. 2008;68(24):10315–23. doi:10.1158/0008-5472.can-08-1984.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Olszewski-Hamilton U, Svoboda M, Thalhammer T, Buxhofer-Ausch V, Geissler K, Hamilton G. Organic anion transporting polypeptide 5A1 (OATP5A1) in small cell lung cancer (SCLC) cells: possible involvement in chemoresistance to satraplatin. Biomark Cancer. 2011;3:31–40. doi:10.4137/bic.s7151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arakawa H, Nakanishi T, Yanagihara C, Nishimoto T, Wakayama T, Mizokami A, et al. Enhanced expression of organic anion transporting polypeptides (OATPs) in androgen receptor-positive prostate cancer cells: possible role of OATP1A2 in adaptive cell growth under androgen-depleted conditions. Biochem Pharmacol. 2012;84(8):1070–7. doi:10.1016/j.bcp.2012.07.026.

    Article  CAS  PubMed  Google Scholar 

  7. Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol. 2012;52:135–51. doi:10.1146/annurev-pharmtox-010510-100556.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705. doi:10.1111/j.1476-5381.2009.00430.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Buxhofer-Ausch V, Secky L, Wlcek K, Svoboda M, Kounnis V, Briasoulis E, et al. Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. J Drug Deliv. 2013;2013:863539. doi:10.1155/2013/863539.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Liu T, Li Q. Organic anion-transporting polypeptides: a novel approach for cancer therapy. J Drug Target. 2014;22(1):14–22. doi:10.3109/1061186x.2013.832767.

    Article  PubMed  CAS  Google Scholar 

  11. Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008;38(7–8):778–801. doi:10.1080/00498250801986951.

    Article  CAS  PubMed  Google Scholar 

  12. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87. doi:10.1111/j.1476-5381.2011.01724.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Banerjee N, Allen C, Bendayan R. Differential role of organic anion-transporting polypeptides in estrone-3-sulphate uptake by breast epithelial cells and breast cancer cells. J Pharmacol Exp Ther. 2012;342(2):510–9. doi:10.1124/jpet.112.192344.

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee N, Fonge H, Mikhail A, Reilly RM, Bendayan R, Allen C. Estrone-3-sulphate, a potential novel ligand for targeting breast cancers. PLoS One. 2013;8(5):e64069. doi:10.1371/journal.pone.0064069.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Maeda T, Irokawa M, Arakawa H, Kuraoka E, Nozawa T, Tateoka R, et al. Uptake transporter organic anion transporting polypeptide 1B3 contributes to the growth of estrogen-dependent breast cancer. J Steroid Biochem Mol Biol. 2010;122(4):180–5. doi:10.1016/j.jsbmb.2010.06.014.

    Article  CAS  PubMed  Google Scholar 

  16. Hamada A, Sissung T, Price DK, Danesi R, Chau CH, Sharifi N, et al. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in Caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res. 2008;14(11):3312–8. doi:10.1158/1078-0432.CCR-07-4118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wright JL, Kwon EM, Ostrander EA, Montgomery RB, Lin DW, Vessella R, et al. Expression of SLCO transport genes in castration-resistant prostate cancer and impact of genetic variation in SLCO1B3 and SLCO2B1 on prostate cancer outcomes. Cancer Epidemiol Biomarkers Prev. 2011;20(4):619–27. doi:10.1158/1055-9965.epi-10-1023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther. 2006;318(2):521–9. doi:10.1124/jpet.106.104364.

    Article  CAS  PubMed  Google Scholar 

  19. Iusuf D, Hendrikx JJ, van Esch A, van de Steeg E, Wagenaar E, Rosing H, et al. Human OATP1B1, OATP1B3 and OATP1A2 can mediate the in vivo uptake and clearance of docetaxel. Int J Cancer. 2014. doi:10.1002/ijc.28970.

    PubMed  Google Scholar 

  20. van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH. Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res. 2013;19(4):821–32. doi:10.1158/1078-0432.ccr-12-2080.

    Article  PubMed  CAS  Google Scholar 

  21. Yamaguchi H, Kobayashi M, Okada M, Takeuchi T, Unno M, Abe T, et al. Rapid screening of antineoplastic candidates for the human organic anion transporter OATP1B3 substrates using fluorescent probes. Cancer Lett. 2008;260(1–2):163–9. doi:10.1016/j.canlet.2007.10.040.

    Article  CAS  PubMed  Google Scholar 

  22. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther. 2005;4(8):815–8.

    Article  CAS  PubMed  Google Scholar 

  23. de Graan AJ, Lancaster CS, Obaidat A, Hagenbuch B, Elens L, Friberg LE, et al. Influence of polymorphic OATP1B-type carriers on the disposition of docetaxel. Clin Cancer Res. 2012;18(16):4433–40. doi:10.1158/1078-0432.CCR-12-0761.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Oswald S, Nassif A, Modess C, Keiser M, Hanke U, Engel A, et al. Pharmacokinetic and pharmacodynamic interactions between the immunosuppressant sirolimus and the lipid-lowering drug ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2010;87(6):663–7. doi:10.1038/clpt.2009.266.

    Article  CAS  PubMed  Google Scholar 

  25. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos. 2005;33(3):434–9. doi:10.1124/dmd.104.001909.

    Article  CAS  PubMed  Google Scholar 

  26. Fujita K, Sugiura T, Okumura H, Umeda S, Nakamichi N, Watanabe Y, et al. Direct inhibition and down-regulation by uremic plasma components of hepatic uptake transporter for SN-38, an active metabolite of irinotecan, in humans. Pharm Res. 2014;31(1):204–15. doi:10.1007/s11095-013-1153-x.

    Article  CAS  PubMed  Google Scholar 

  27. Picard N, Levoir L, Lamoureux F, Yee SW, Giacomini KM, Marquet P. Interaction of sirolimus and everolimus with hepatic and intestinal organic anion-transporting polypeptide transporters. Xenobiotica. 2011;41(9):752–7. doi:10.3109/00498254.2011.573882.

    Article  CAS  PubMed  Google Scholar 

  28. Feng B, Xu JJ, Bi YA, Mireles R, Davidson R, Duignan DB, et al. Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP-724,714. Toxicol Sci. 2009;108(2):492–500. doi:10.1093/toxsci/kfp033.

    Article  CAS  PubMed  Google Scholar 

  29. Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol. 2002;61(4):853–60.

    Article  CAS  PubMed  Google Scholar 

  30. Oostendorp RL, van de Steeg E, van der Kruijssen CM, Beijnen JH, Kenworthy KE, Schinkel AH, et al. Organic anion-transporting polypeptide 1B1 mediates transport of Gimatecan and BNP1350 and can be inhibited by several classic ATP-binding cassette (ABC) B1 and/or ABCG2 inhibitors. Drug Metab Dispos. 2009;37(4):917–23. doi:10.1124/dmd.108.024901.

    Article  CAS  PubMed  Google Scholar 

  31. Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14(10):3141–8. doi:10.1158/1078-0432.ccr-07-4913.

    Article  CAS  PubMed  Google Scholar 

  32. Yamakawa Y, Hamada A, Shuto T, Yuki M, Uchida T, Kai H, et al. Pharmacokinetic impact of SLCO1A2 polymorphisms on imatinib disposition in patients with chronic myeloid leukemia. Clin Pharmacol Ther. 2011;90(1):157–63. doi:10.1038/clpt.2011.102.

    Article  CAS  PubMed  Google Scholar 

  33. Narita M, Hatano E, Arizono S, Miyagawa-Hayashino A, Isoda H, Kitamura K, et al. Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol. 2009;44(7):793–8. doi:10.1007/s00535-009-0056-4.

    Article  CAS  PubMed  Google Scholar 

  34. Leonhardt M, Keiser M, Oswald S, Kuhn J, Jia J, Grube M, et al. Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos. 2010;38(7):1024–8. doi:10.1124/dmd.110.032862.

    Article  PubMed  CAS  Google Scholar 

  35. Nassif A, Jia J, Keiser M, Oswald S, Modess C, Nagel S, et al. Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid-enhanced MR imaging. Radiology. 2012;264(3):741–50. doi:10.1148/radiol.12112061.

    Article  PubMed  Google Scholar 

  36. Yamashita T, Kitao A, Matsui O, Hayashi T, Nio K, Kondo M, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology. 2014. doi:10.1002/hep.27093.

    Google Scholar 

  37. Zollner G, Wagner M, Fickert P, Silbert D, Fuchsbichler A, Zatloukal K, et al. Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int. 2005;25(2):367–79. doi:10.1111/j.1478-3231.2005.01033.x.

    Article  CAS  PubMed  Google Scholar 

  38. Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA. Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and OATP1B3-expressing HeLa cells. Mol Cancer Ther. 2007;6(2):587–98. doi:10.1158/1535-7163.MCT-06-0500.

    Article  CAS  PubMed  Google Scholar 

  39. Libra A, Fernetti C, Lorusso V, Visigalli M, Anelli PL, Staud F, et al. Molecular determinants in the transport of a bile acid-derived diagnostic agent in tumoral and nontumoral cell lines of human liver. J Pharmacol Exp Ther. 2006;319(2):809–17. doi:10.1124/jpet.106.106591.

    Article  CAS  PubMed  Google Scholar 

  40. Vander Borght S, Libbrecht L, Blokzijl H, Faber KN, Moshage H, Aerts R, et al. Diagnostic and pathogenetic implications of the expression of hepatic transporters in focal lesions occurring in normal liver. J Pathol. 2005;207(4):471–82. doi:10.1002/path.1852.

    Article  CAS  PubMed  Google Scholar 

  41. Vavricka SR, Jung D, Fried M, Grutzner U, Meier PJ, Kullak-Ublick GA. The human organic anion transporting polypeptide 8 (SLCO1B3) gene is transcriptionally repressed by hepatocyte nuclear factor 3beta in hepatocellular carcinoma. J Hepatol. 2004;40(2):212–8.

    Article  CAS  PubMed  Google Scholar 

  42. Takane H, Kawamoto K, Sasaki T, Moriki K, Moriki K, Kitano H, et al. Life-threatening toxicities in a patient with UGT1A1*6/*28 and SLCO1B1*15/*15 genotypes after irinotecan-based chemotherapy. Cancer Chemother Pharmacol. 2009;63(6):1165–9. doi:10.1007/s00280-008-0864-x.

    Article  PubMed  Google Scholar 

  43. Xiang X, Jada SR, Li HH, Fan L, Tham LS, Wong CI, et al. Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet Genomics. 2006;16(9):683–91. doi:10.1097/01.fpc.0000230420.05221.71.

    Article  CAS  PubMed  Google Scholar 

  44. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27(35):5972–8. doi:10.1200/jco.2008.20.4156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121(6):898–904. doi:10.1182/blood-2012-08-452839.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Moricke A, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121(26):5145–53. doi:10.1182/blood-2013-01-480335.

    Article  CAS  PubMed  Google Scholar 

  47. Letschert K, Keppler D, Konig J. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics. 2004;14(7):441–52.

    Article  CAS  PubMed  Google Scholar 

  48. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K, et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther. 2007;81(1):76–82. doi:10.1038/sj.clpt.6100011.

    Article  CAS  PubMed  Google Scholar 

  49. Kiyotani K, Mushiroda T, Kubo M, Zembutsu H, Sugiyama Y, Nakamura Y. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci. 2008;99(5):967–72. doi:10.1111/j.1349-7006.2008.00765.x.

    Article  CAS  PubMed  Google Scholar 

  50. Yamada A, Maeda K, Kiyotani K, Mushiroda T, Nakamura Y, Sugiyama Y. Kinetic interpretation of the importance of OATP1B3 and MRP2 in docetaxel-induced hematopoietic toxicity. CPT Pharm Syst Pharmacol. 2014;3:e126. doi:10.1038/psp.2014.23.

    Article  CAS  Google Scholar 

  51. Chen C, Stock JL, Liu X, Shi J, Van Deusen JW, DiMattia DA, et al. Utility of a novel Oatp1b2 knockout mouse model for evaluating the role of Oatp1b2 in the hepatic uptake of model compounds. Drug Metab Dispos. 2008;36(9):1840–5. doi:10.1124/dmd.108.020594.

    Article  CAS  PubMed  Google Scholar 

  52. Lu H, Choudhuri S, Ogura K, Csanaky IL, Lei X, Cheng X, et al. Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol Sci. 2008;103(1):35–45. doi:10.1093/toxsci/kfn038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zaher H, Meyer zu Schwabedissen HE, Tirona RG, Cox ML, Obert LA, Agrawal N, et al. Targeted disruption of murine organic anion-transporting polypeptide 1b2 (Oatp1b2/Slco1b2) significantly alters disposition of prototypical drug substrates pravastatin and rifampin. Mol Pharmacol. 2008;74(2):320–9. doi:10.1124/mol.108.046458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. van de Steeg E, Wagenaar E, van der Kruijssen CM, Burggraaff JE, de Waart DR, Elferink RP, et al. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest. 2010;120(8):2942–52. doi:10.1172/jci42168.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. van de Steeg E, van Esch A, Wagenaar E, van der Kruijssen CM, van Tellingen O, Kenworthy KE, et al. High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel. Clin Cancer Res. 2011;17(2):294–301. doi:10.1158/1078-0432.ccr-10-1980.

    Article  PubMed  CAS  Google Scholar 

  56. van de Steeg E, van der Kruijssen CM, Wagenaar E, Burggraaff JE, Mesman E, Kenworthy KE, et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos. 2009;37(2):277–81. doi:10.1124/dmd.108.024315.

    Article  PubMed  CAS  Google Scholar 

  57. Iusuf D, Ludwig M, Elbatsh A, van Esch A, van de Steeg E, Wagenaar E, et al. OATP1A/1B transporters affect irinotecan and SN-38 pharmacokinetics and carboxylesterase expression in knockout and humanized transgenic mice. Mol Cancer Ther. 2014;13(2):492–503. doi:10.1158/1535-7163.mct-13-0541.

    Article  CAS  PubMed  Google Scholar 

  58. Durmus S, Naik J, Buil L, Wagenaar E, van Tellingen O, Schinkel AH. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer. 2014;135(7):1700–10. doi:10.1002/ijc.28797.

    Article  CAS  PubMed  Google Scholar 

  59. Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther. 2000;294(1):73–9.

    CAS  PubMed  Google Scholar 

  60. Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G, et al. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol Chem. 2005;280(10):9610–7. doi:10.1074/jbc.M411092200.

    Article  CAS  PubMed  Google Scholar 

  61. Miki Y, Suzuki T, Kitada K, Yabuki N, Shibuya R, Moriya T, et al. Expression of the steroid and xenobiotic receptor and its possible target gene, organic anion transporting polypeptide-A, in human breast carcinoma. Cancer Res. 2006;66(1):535–42. doi:10.1158/0008-5472.can-05-1070.

    Article  CAS  PubMed  Google Scholar 

  62. Meyer zu Schwabedissen HE, Tirona RG, Yip CS, Ho RH, Kim RB. Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer. Cancer Res. 2008;68(22):9338–47. doi:10.1158/0008-5472.can-08-0265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ballestero MR, Monte MJ, Briz O, Jimenez F, Gonzalez-San Martin F, Marin JJ. Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem Pharmacol. 2006;72(6):729–38. doi:10.1016/j.bcp.2006.06.007.

    Article  CAS  PubMed  Google Scholar 

  64. Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther. 2007;81(3):362–70. doi:10.1038/sj.clpt.6100056.

    Article  CAS  PubMed  Google Scholar 

  65. Liedauer R, Svoboda M, Wlcek K, Arrich F, Ja W, Toma C, et al. Different expression patterns of organic anion transporting polypeptides in osteosarcomas, bone metastases and aneurysmal bone cysts. Oncol Rep. 2009;22(6):1485–92.

    CAS  PubMed  Google Scholar 

  66. Konig J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000;278(1):G156–64.

    CAS  PubMed  Google Scholar 

  67. Cui Y, Konig J, Nies AT, Pfannschmidt M, Hergt M, Franke WW, et al. Detection of the human organic anion transporters SLC21A6 (OATP2) and SLC21A8 (OATP8) in liver and hepatocellular carcinoma. Lab Invest. 2003;83(4):527–38.

    Article  CAS  PubMed  Google Scholar 

  68. Pressler H, Sissung TM, Venzon D, Price DK, Figg WD. Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS One. 2011;6(5):e20372. doi:10.1371/journal.pone.0020372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Svoboda M, Wlcek K, Taferner B, Hering S, Stieger B, Tong D, et al. Expression of organic anion-transporting polypeptides 1B1 and 1B3 in ovarian cancer cells: relevance for paclitaxel transport. Biomed Pharma Biomed Pharmacot. 2011;65(6):417–26. doi:10.1016/j.biopha.2011.04.031.

    Article  CAS  Google Scholar 

  70. Konig J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem. 2000;275(30):23161–8. doi:10.1074/jbc.M001448200.

    Article  CAS  PubMed  Google Scholar 

  71. Thakkar N, Kim K, Jang ER, Han S, Kim K, Kim D, et al. A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm of colon and pancreatic cancer cells. Mol Pharm. 2013;10(1):406–16. doi:10.1021/mp3005353.

    Article  CAS  PubMed  Google Scholar 

  72. Nagai M, Furihata T, Matsumoto S, Ishii S, Motohashi S, Yoshino I, et al. Identification of a new organic anion transporting polypeptide 1B3 mRNA isoform primarily expressed in human cancerous tissues and cells. Biochem Biophys Res Commun. 2012;418(4):818–23. doi:10.1016/j.bbrc.2012.01.115.

    Article  CAS  PubMed  Google Scholar 

  73. Hays A, Apte U, Hagenbuch B. Organic anion transporting polypeptides expressed in pancreatic cancer may serve as potential diagnostic markers and therapeutic targets for early stage adenocarcinomas. Pharm Res. 2013;30(9):2260–9. doi:10.1007/s11095-012-0962-7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Pratt E, Sissung TM, Figg WD. Loss of OATP1B3 function causes Rotor syndrome: implications for potential use of inhibitors in cancer. Cancer Biol Ther. 2012;13(14):1374–5. doi:10.4161/cbt.22010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Muto M, Onogawa T, Suzuki T, Ishida T, Rikiyama T, Katayose Y, et al. Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci. 2007;98(10):1570–6. doi:10.1111/j.1349-7006.2007.00570.x.

    Article  CAS  PubMed  Google Scholar 

  76. Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol. 2002;16(10):2283–96. doi:10.1210/me.2001-0309.

    Article  CAS  PubMed  Google Scholar 

  77. Gao B, Huber RD, Wenzel A, Vavricka SR, Ismair MG, Reme C, et al. Localization of organic anion transporting polypeptides in the rat and human ciliary body epithelium. Exp Eye Res. 2005;80(1):61–72. doi:10.1016/j.exer.2004.08.013.

    Article  CAS  PubMed  Google Scholar 

  78. Schuster VL. Prostaglandin transport. Prostaglandins Other Lipid Mediat. 2002;68–69:633–47.

    Article  PubMed  Google Scholar 

  79. Wlcek K, Svoboda M, Thalhammer T, Sellner F, Krupitza G, Jaeger W. Altered expression of organic anion transporter polypeptide (OATP) genes in human breast carcinoma. Cancer Biol Ther. 2008;7(9):1450–5.

    Article  CAS  PubMed  Google Scholar 

  80. Wlcek K, Svoboda M, Riha J, Zakaria S, Olszewski U, Dvorak Z, et al. The analysis of organic anion transporting polypeptide (OATP) mRNA and protein patterns in primary and metastatic liver cancer. Cancer Biol Ther. 2011;11(9):801–11.

    Article  CAS  PubMed  Google Scholar 

  81. Holla VR, Backlund MG, Yang P, Newman RA, DuBois RN. Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prev Res (Phila). 2008;1(2):93–9. doi:10.1158/1940-6207.capr-07-0009.

    Article  CAS  Google Scholar 

  82. Bronger H, Konig J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 2005;65(24):11419–28. doi:10.1158/0008-5472.can-05-1271.

    Article  CAS  PubMed  Google Scholar 

  83. Grube M, Kock K, Oswald S, Draber K, Meissner K, Eckel L, et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther. 2006;80(6):607–20. doi:10.1016/j.clpt.2006.09.010.

    Article  CAS  PubMed  Google Scholar 

  84. Al Sarakbi W, Mokbel R, Salhab M, Jiang WG, Reed MJ, Mokbel K. The role of STS and OATP-B mRNA expression in predicting the clinical outcome in human breast cancer. Anticancer Res. 2006;26(6C):4985–90.

    CAS  PubMed  Google Scholar 

  85. Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther. 2003;306(2):703–8. doi:10.1124/jpet.103.051300.

    Article  CAS  PubMed  Google Scholar 

  86. Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology. 2001;120(2):525–33.

    Article  CAS  PubMed  Google Scholar 

  87. St-Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T. Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrinol Metab. 2002;87(4):1856–63.

    Article  CAS  PubMed  Google Scholar 

  88. Adachi H, Suzuki T, Abe M, Asano N, Mizutamari H, Tanemoto M, et al. Molecular characterization of human and rat organic anion transporter OATP-D. Am J Physiol Renal Physiol. 2003;285(6):F1188–97. doi:10.1152/ajprenal.00402.2002.

    Article  CAS  PubMed  Google Scholar 

  89. Kindla J, Rau TT, Jung R, Fasching PA, Strick R, Stoehr R, et al. Expression and localization of the uptake transporters OATP2B1, OATP3A1 and OATP5A1 in non-malignant and malignant breast tissue. Cancer Biol Ther. 2011;11(6):584–91.

    Article  CAS  PubMed  Google Scholar 

  90. Tamai I, Nezu J, Uchino H, Sai Y, Oku A, Shimane M, et al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun. 2000;273(1):251–60. doi:10.1006/bbrc.2000.2922.

    Article  CAS  PubMed  Google Scholar 

  91. Kleberg K, Jensen GM, Christensen DP, Lundh M, Grunnet LG, Knuhtsen S, et al. Transporter function and cyclic AMP turnover in normal colonic mucosa from patients with and without colorectal neoplasia. BMC Gastroenterol. 2012;12:78. doi:10.1186/1471-230x-12-78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci U S A. 2004;101(10):3569–74. doi:10.1073/pnas.0304987101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Suzuki T, Onogawa T, Asano N, Mizutamari H, Mikkaichi T, Tanemoto M, et al. Identification and characterization of novel rat and human gonad-specific organic anion transporters. Mol Endocrinol. 2003;17(7):1203–15. doi:10.1210/me.2002-0304.

    Article  CAS  PubMed  Google Scholar 

  94. Lee SY, Williamson B, Caballero OL, Chen YT, Scanlan MJ, Ritter G, et al. Identification of the gonad-specific anion transporter SLCO6A1 as a cancer/testis (CT) antigen expressed in human lung cancer. Cancer Immun. 2004;4:13.

    PubMed  Google Scholar 

  95. Alcorn J, Lu X, Moscow JA, McNamara PJ. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J Pharmacol Exp Ther. 2002;303(2):487–96. doi:10.1124/jpet.102.038315.

    Article  CAS  PubMed  Google Scholar 

  96. Hashimoto Y, Tatsumi S, Takeda R, Naka A, Ogane N, Kameda Y, et al. Expression of organic anion-transporting polypeptide 1A2 and organic cation transporter 6 as a predictor of pathologic response to neoadjuvant chemotherapy in triple negative breast cancer. Breast Cancer Res Treat. 2014;145(1):101–11. doi:10.1007/s10549-014-2913-y.

    Article  CAS  PubMed  Google Scholar 

  97. Niedermeyer TH, Daily A, Swiatecka-Hagenbruch M, Moscow JA. Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells. PLoS One. 2014;9(3):e91476. doi:10.1371/journal.pone.0091476.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Tsuboyama T, Onishi H, Kim T, Akita H, Hori M, Tatsumi M, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology. 2010;255(3):824–33. doi:10.1148/radiol.10091557.

    Article  PubMed  Google Scholar 

  99. Lockhart AC, Harris E, Lafleur BJ, Merchant NB, Washington MK, Resnick MB, et al. Organic anion transporting polypeptide 1B3 (OATP1B3) is overexpressed in colorectal tumors and is a predictor of clinical outcome. Clin Exper Gastro. 2008;1:1–7.

    Article  CAS  Google Scholar 

  100. Imai S, Kikuchi R, Tsuruya Y, Naoi S, Nishida S, Kusuhara H, et al. Epigenetic regulation of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res. 2013;30(11):2880–90. doi:10.1007/s11095-013-1117-1.

    Article  CAS  PubMed  Google Scholar 

  101. Ichihara S, Kikuchi R, Kusuhara H, Imai S, Maeda K, Sugiyama Y. DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res. 2010;27(3):510–6. doi:10.1007/s11095-010-0064-3.

    Article  CAS  PubMed  Google Scholar 

  102. Han S, Kim K, Thakkar N, Kim D, Lee W. Role of hypoxia inducible factor-1alpha in the regulation of the cancer-specific variant of organic anion transporting polypeptide 1B3 (OATP1B3), in colon and pancreatic cancer. Biochem Pharmacol. 2013;86(6):816–23. doi:10.1016/j.bcp.2013.07.020.

    Article  CAS  PubMed  Google Scholar 

  103. Lu R, Kanai N, Bao Y, Schuster VL. Cloning, in vitro expression, and tissue distribution of a human prostaglandin transporter cDNA(hPGT). J Clin Invest. 1996;98(5):1142–9. doi:10.1172/jci118897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooin Lee.

Additional information

Guest Editor: Rajgopal Govindarajan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakkar, N., Lockhart, A.C. & Lee, W. Role of Organic Anion-Transporting Polypeptides (OATPs) in Cancer Therapy. AAPS J 17, 535–545 (2015). https://doi.org/10.1208/s12248-015-9740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9740-x

KEY WORDS

Navigation