Skip to main content
Log in

Structural and Activity Profile Relationships Between Drug Scaffolds

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Core structures of current drugs have been assembled and their structural relationships and activity profiles have been explored. Drug scaffolds were frequently involved in different types of structural relationships. In addition, a variety of activity profile relationships between structurally related drug scaffolds were detected, ranging from closely overlapping to distinct profiles. Furthermore, when structural and activity profile relationships of scaffolds from drugs and bioactive compounds were compared, systematic differences were detected. Consensus activity profiles were introduced as a new approach for the qualitative and quantitative assessment of activity similarity of structurally related drugs represented by the same scaffold. On the basis of consensus activity profiles, scaffolds representing drugs active against distinct targets can be distinguished from drugs having similar target profiles and target hypotheses can be derived for individual drugs. Given the results of our analysis, drug scaffolds have been systematically organized according to structural and activity profile criteria. Our scaffold sets and the associated information are made freely available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Hu Y, Stumpfe D, Bajorath J. Lessons learned from molecular scaffold analysis. J Chem Inf Model. 2011;51(8):1742–53. doi:10.1021/ci200179y.

    Article  CAS  PubMed  Google Scholar 

  2. Brown N, Jacoby E. On scaffolds and hopping in medicinal chemistry. Mini-Rev Med Chem. 2006;6(11):1217–29.

    Article  CAS  PubMed  Google Scholar 

  3. Bemis GW, Murcko MA. The properties of known drugs. 1. Molecular frameworks. J Med Chem. 1996;39(15):2887–93. doi:10.1021/jm9602928.

    Article  CAS  PubMed  Google Scholar 

  4. Müller G. Medicinal chemistry of target family-directed masterkeys. Drug Discov Today. 2003;8(15):681–91. doi:10.1016/S1359-6446(03)02781-8.

    Article  PubMed  Google Scholar 

  5. Sutherland JJ, Higgs RE, Watson I, Vieth M. Chemical fragments as foundations for understanding target space and activity prediction. J Med Chem. 2008;51(9):2689–700. doi:10.1021/jm701399f.

    Article  CAS  PubMed  Google Scholar 

  6. Schuffenhauer A, Ertl P, Roggo S, Wetzel S, Koch MA, Waldmann H. The scaffold tree—visualization of the scaffold universe by hierarchical scaffold classification. J Chem Inf Model. 2007;47(1):47–58. doi:10.1021/ci600338x.

    Article  CAS  PubMed  Google Scholar 

  7. Renner S, Van Otterlo WAL, Seoane MD, Möcklinghoff S, Hoffmann B, Wetzel S, et al. Bioactivity-guided mapping and navigation of chemical space. Nat Chem Biol. 2009;5(8):585–92. doi:10.1038/nchembio.188.

    Article  CAS  PubMed  Google Scholar 

  8. Hu Y, Bajorath J. Scaffold distributions in bioactive molecules, clinical trials compounds, and drugs. ChemMedChem. 2010;5(2):187–90. doi:10.1002/cmdc.200900419.

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y, Bajorath J. Rationalizing structure and target relationships between current drugs. AAPS J. 2012;14(4):764–71. doi:10.1208/s12248-012-9392-z.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang J, Hou T. Drug and drug candidate building block analysis. J Chem Inf Model. 2010;50(1):55–67. doi:10.1021/ci900398f.

    Article  PubMed  Google Scholar 

  11. Taylor RD, MacCoss M, Lawson ADG. Rings in drugs. J Med Chem. 2014;57(14):5845–59. doi:10.1021/jm4017625.

    Article  CAS  PubMed  Google Scholar 

  12. Comprehensive Medicinal Chemistry (CMC) database: http://accelrys.com/products/databases/bioactivity/comprehensive-medicinal-chemistry.html.

  13. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(Database issue):D1091–7. doi:10.1093/nar/gkt1068.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. DrugBank: http://www.drugbank.ca.

  15. World Drug Index (WDI): http://thomsonreuters.com/world-drug-index/.

  16. FDA Orange Book: http://www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm.

  17. Hu Y, Bajorath J. Many drugs contain unique scaffolds with varying structural relationships to scaffolds of currently available bioactive compounds. Eur J Med Chem. 2014;76:427–34. doi:10.1016/j.ejmech.2014.02.040.

    Article  CAS  PubMed  Google Scholar 

  18. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42(Database issue):D1083–90. doi:10.1093/nar/gkt1031.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hu Y, Bajorath J. Influence of search parameters and criteria on compound selection, promiscuity, and pan assay interference characteristics. J Chem Inf Model. 2014;54(11):3056–66. doi:10.1021/ci5005509.

    Article  CAS  PubMed  Google Scholar 

  20. UniProt Consortium. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res. 2010;38(Database issue):D142–8. doi:10.1093/nar/gkp846.

    Article  Google Scholar 

  21. Hu Y, Bajorath J. How promiscuous are pharmaceutically relevant compounds? A data-driven assessment. AAPS J. 2013;15(1):104–11. doi:10.1208/s12248-012-9421-y.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Xu YJ, Johnson M. Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J Med Chem. 2002;42(4):912–26. doi:10.1021/ci025535l.

    CAS  Google Scholar 

  23. Kenny PW, Sadowski J. Structure modification in chemical databases. In: Oprea TI, editor. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH; 2004. p. 271–85.

    Google Scholar 

  24. Hussain J, Rea C. Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model. 2010;50(3):339–48. doi:10.1021/ci900450m.

    Article  CAS  PubMed  Google Scholar 

  25. Hu X, Hu Y, Vogt M, Stumpfe D, Bajorath J. MMP-cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs. J Chem Inf Model. 2012;52(5):1138–45. doi:10.1021/ci3001138.

    Article  CAS  PubMed  Google Scholar 

  26. OEChem, version 1.7.7, OpenEye Scientific Software, Inc., Santa Fe, NM, USA. 2012. http://www.eyesopen.com.

  27. Lewell XQ, Judd DB, Watson SP, Hann MM. RECAP—retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci. 1998;38(3):511–22. doi:10.1021/ci970429i.

    Article  CAS  PubMed  Google Scholar 

  28. de la Vega de León A, Bajorath J. Matched molecular pairs derived by retrosynthetic fragmentation. Med Chem Commun. 2014;5:64–7. doi:10.1039/C3MD00259D.

    Article  Google Scholar 

  29. Cases M, Mestres J. A chemogenomic approach to drug discovery: focus on cardiovascular diseases. Drug Discov Today. 2009;14(9–10):479–85. doi:10.1016/j.drudis.2009.02.010.

    Article  CAS  PubMed  Google Scholar 

  30. Ertl P. Intuitive ordering of scaffolds and scaffold similarity searching using scaffold keys. J Chem Inf Model. 2014;54(6):1617–22. doi:10.1021/ci5001983.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Bajorath J. Compound promiscuity—what can we learn from current data. Drug Discov Today. 2013;18(13–14):644–50. doi:10.1016/j.drudis.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y, Bajorath J. High-resolution view of compound promiscuity. F1000Res. 2013;2:144. doi:10.12688/f1000research.2-144.v2.

    PubMed Central  PubMed  Google Scholar 

  33. Hu Y, Bajorath J. What is the likelihood of an active Compound to be promiscuous? Systematic assessment of compound promiscuity on the basis of PubChem confirmatory bioassay data. AAPS J. 2013;15(3):808–15. doi:10.1208/s12248-013-9488-0.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mestres J, Gregori-Puigjane E, Valverde S, Sole RV. Data completeness—the achilles heel of drug-target networks. Nat Biotechnol. 2008;26(9):983–4. doi:10.1038/nbt0908-983.

    Article  CAS  PubMed  Google Scholar 

  35. Hu Y, Lounkine E, Bajorath J. Many approved drugs have bioactive analogs with different target annotations. AAPS J. 2014;16(4):847–59. doi:10.1208/s12248-014-9621-8.

    Article  CAS  PubMed  Google Scholar 

  36. Hu Y, Bajorath J. Drug scaffolds and their structural relationships. ZENODO. 2014; 10.5281/zenodo.14947.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Bajorath, J. Structural and Activity Profile Relationships Between Drug Scaffolds. AAPS J 17, 609–619 (2015). https://doi.org/10.1208/s12248-015-9737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9737-5

KEY WORDS

Navigation