Skip to main content

Advertisement

Log in

Development of a Novel Oral Cavity Compartmental Absorption and Transit Model for Sublingual Administration: Illustration with Zolpidem

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Intraoral (IO) delivery is an alternative administration route to deliver a drug substance via the mouth that provides several advantages over conventional oral dosage forms. The purpose of this work was to develop and evaluate a novel, physiologically based oral cavity model for projection and mechanistic analysis of the clinical pharmacokinetics of intraoral formulations. The GastroPlus™ Oral Cavity Compartmental Absorption and Transit (OCCAT™) model was used to simulate the plasma concentration versus time profiles and the fraction and rate of intraoral drug transit/absorption for Intermezzo® sublingual tablets (zolpidem tartrate). The model was evaluated by the goodness-of-fit between simulated and observed concentrations and the deviation of key PK parameters (e.g., C max, T max, and AUC). In addition, a sensitivity analysis was conducted to demonstrate the interplay and impact of key modeling parameters on the fraction absorbed via oral mucosa (F a_IO). The OCCAT™ model captured the observed pharmacokinetics for Intermezzo® sublingual tablets (R 2 > 0.9). The predicted deviations (%) for C max, AUC0–inf, AUC0–20 min, and T max were 5.7, 28.0, 11.8, and 28.6%, respectively, indicating good prediction accuracy. The model also estimated ~18% of total drug was absorbed via the IO route. Furthermore, the sensitivity analysis indicated that the F a_IO was not only associated with drug diffusivity and unbound fraction in epithelium tissue (f ut) but also depended on the physicochemical properties of compounds for IO delivery (e.g., solubility and logD pH = 7.4). The novel physiologically based IO absorption OCCAT™ model showed satisfactory performance and will be helpful to guide development of future intraoral formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mathias NR, Hussain MA. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci. 2010;99(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  2. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011;153(2):106–16.

    Article  CAS  PubMed  Google Scholar 

  3. Hearnden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, et al. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev. 2012;64(1):16–28.

    Article  CAS  PubMed  Google Scholar 

  4. Sugano K. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol. 2009;5(3):259–93.

    Article  CAS  PubMed  Google Scholar 

  5. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2013 Sep 21.

  6. Kates RE. Absorption kinetics of sublingually administered propranolol. J Med. 1977;8(6):393–402.

    CAS  PubMed  Google Scholar 

  7. Beckett ABR, Triggs EJ. Kinetics of buccal absorption of amphetamines. J Pharm Pharmacol. 1968;20(2):92–7.

    Article  CAS  Google Scholar 

  8. Wang Y, Wang Z, Zuo Z, Tomlinson B, Lee BT, Bolger MB, et al. Clinical pharmacokinetics of buffered propranolol sublingual tablet (Promptol)—application of a new “physiologically based” model to assess absorption and disposition. AAPS J. 2013;15(3):787–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shankaran H, Adeshina F, Teeguarden JG. Physiologically-based pharmacokinetic model for Fentanyl in support of the development of provisional advisory levels. Toxicol Appl Pharmacol. 2013;273(3):464–76.

    Article  CAS  PubMed  Google Scholar 

  10. Bartlett JA, van der Voort MK. Understanding the oral mucosal absorption and resulting clinical pharmacokinetics of asenapine. AAPS PharmSciTech. 2012;13(4):1110–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin Pharmacokinet. 2002;41(9):661–80.

    Article  CAS  PubMed  Google Scholar 

  12. Squier CA, Wertz PW. Permeability and the pathophysiology of oral mucosa. Adv Drug Deliv Rev. 1993;12:13–24.

    Article  Google Scholar 

  13. Goswami T, Kokate A, Jasti BR, Li X. In silico model of drug permeability across sublingual mucosa. Arch Oral Biol. 2012;58(5):545–51.

    Article  PubMed  Google Scholar 

  14. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50 Suppl 1:S41–67.

    Article  CAS  PubMed  Google Scholar 

  15. Lagerlof F, Dawes C. The volume of saliva in the mouth before and after swallowing. J Dent Res. 1984;63(5):618–21.

    Article  CAS  PubMed  Google Scholar 

  16. Ramirez E, Laosa O, Guerra P, Duque B, Mosquera B, Borobia AM, et al. Acceptability and characteristics of 124 human bioequivalence studies with active substances classified according to the biopharmaceutic classification system. Br J Clin Pharmacol. 2010;70(5):694–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Durand A, Thenot JP, Bianchetti G, Morselli PL. Comparative pharmacokinetic profile of two imidazopyridine drugs: zolpidem and alpidem. Drug Metab Rev. 1992;24(2):239–66.

    Article  CAS  PubMed  Google Scholar 

  18. FDA. Intermezzo NDA files. 2011.

  19. Staner L, Eriksson M, Cornette F, Santoro F, Muscat N, Luthinger R, et al. Sublingual zolpidem is more effective than oral zolpidem in initiating early onset of sleep in the post-nap model of transient insomnia: a polysomnographic study. Sleep Med. 2009;10(6):616–20.

    Article  CAS  PubMed  Google Scholar 

  20. Staner C, Joly F, Jacquot N, Vlasova ID, Nehlin M, Lundqvist T, et al. Sublingual zolpidem in early onset of sleep compared to oral zolpidem: polysomnographic study in patients with primary insomnia. Curr Med Res Opin. 2010;26(6):1423–31.

    Article  CAS  PubMed  Google Scholar 

  21. Ho NFH. Biophysical kinetic modeling of buccal absorption. Adv Drug Deliv Rev. 1993;12(1–2):61–97.

    Article  Google Scholar 

  22. Rathbone MJ, Hadgraft J. Absorption of drugs from the human oral cavity. Int J Pharm. 1991;74:9–24.

    Article  CAS  Google Scholar 

  23. Lien EJCK, Tong RT, George L. Physicochemical properties, bioavailability of drugs: buccal and percutaneous absorptions. Drug Intelligence. 1971;5(2):38–41.

    CAS  Google Scholar 

  24. Beckett AH, Moffat AC. Correlation of partition coefficients in n-heptane-aqueous systems with buccal absorption data for a series of amines and acids. J Pharm Pharmacol. 1969;21(Suppl):144S.

    Article  PubMed  Google Scholar 

  25. Greenblatt DJ, Harmatz JS, Roth T, Singh NN, Moline ML, Harris SC, et al. Comparison of pharmacokinetic profiles of zolpidem buffered sublingual tablet and zolpidem oral immediate-release tablet: results from a single-center, single-dose, randomized, open-label crossover study in healthy adults. Clin Ther. 2013;35(5):604–11.

    Article  CAS  PubMed  Google Scholar 

  26. Green R, Hicks RW. Orally disintegrating vardenafil tablets for the treatment of erectile dysfunction: efficacy, safety, and patient acceptability. Patient Prefer Adherence. 2011;5:181–5.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Heckmann SM, Heckmann JG, Hilz MJ, Popp M, Marthol H, Neundorfer B, et al. Oral mucosal blood flow in patients with burning mouth syndrome. Pain. 2001;90:281–6.

    Article  CAS  PubMed  Google Scholar 

  28. Atasever NE, Ercan MT, Naldoken S, Ulutuncel N. Effect of wearing complete dentures on human palatal mucosal blood flow measured by 133-Xe clearance. Arch Oral Biol. 1991;36(9):627–30.

    Article  CAS  PubMed  Google Scholar 

  29. Collins LMC, Dawes C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res. 1987;66(8):1300–2.

    Article  CAS  PubMed  Google Scholar 

  30. Sudhakar Y, Kuotsu K, Bandyopadhayay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114(1):15–40.

    Article  CAS  PubMed  Google Scholar 

  31. Vorperian HK, Wang S, Chung MK, Schimek EM, Durtschi RB, Kent RD, et al. Anatomic development of the oral and pharyngeal portions of the vocal tract: an imaging study. J Acoust Soc Am. 2009;125(3):1666–78.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Feldchtein FI, Gelikonov GV, Gelikonov VM, Iksanov RR, Kuranov RV, Sergeev AM, et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3(6):239–50.

    Article  CAS  PubMed  Google Scholar 

  33. Prestin S, Rothschild SI, Betz CS, Kraft M. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34(12):1777–81.

    Article  PubMed  Google Scholar 

  34. Klein-Szanto AJP, Schroeder HE. Architecture and density of the connective tissue papillae of the human oral mucosa. J Anat. 1977;123(1):93–109.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Muller HP, Schaller N, Eger T, Heinecke A. Thickness of masticatory mucosa. J Clin Periodontol. 2000;27:431–6.

    Article  CAS  PubMed  Google Scholar 

  36. Valentine JA, Scott J, West CR, Hill CAS. A histological analysis of the early effects of alcohol and tobacco usage on human lingual epithelium. J Oral Pathol. 1985;14:654–65.

    Article  CAS  PubMed  Google Scholar 

  37. Sasaki M. Histomorphometric analysis of age-related changes in epithelial thickness and Langerhans cell density of the human tongue. Tohoku J Exp Med. 1994;173:321–36.

    Article  CAS  PubMed  Google Scholar 

  38. Aframian DJ, Davidowitz T, Benoliel R. The distribution of oral mucosal pH values in healthy saliva secretors. Oral Dis. 2006;12:420–3.

    Article  CAS  PubMed  Google Scholar 

  39. FDA. Asenapine FDA NDA file. 2009.

  40. Berk SI, Beckman K, Hoon TJ, Hariman RJ, Hu D, Siegel FP, et al. Comparison of the pharmacokinetics and electrocardiographic effects of sublingual and intravenous verapamil. Pharmacotherapy. 1992;12(1):33–9.

    CAS  PubMed  Google Scholar 

  41. Hukkanen J, Jacob 3rd P, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115.

    Article  CAS  PubMed  Google Scholar 

  42. Molander L, Lunell E. Pharmacokinetic investigation of a nicotine sublingual tablet. Eur J Clin Pharmacol. 2001;56(11):813–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Anita Lalloo, Becky Nissley, Kimberly Manser, and Poonam Saraf for their assistance in the in vitro permeation studies; Henry Wu and David Edward Storey for scientific input and discussion; and Merck creative studios for English edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binfeng Xia.

Additional information

Binfeng Xia and Zhen Yang equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 94.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, B., Yang, Z., Zhou, H. et al. Development of a Novel Oral Cavity Compartmental Absorption and Transit Model for Sublingual Administration: Illustration with Zolpidem. AAPS J 17, 631–642 (2015). https://doi.org/10.1208/s12248-015-9727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9727-7

KEY WORDS

Navigation