The AAPS Journal

, Volume 17, Issue 2, pp 380–388 | Cite as

Peptide Amphiphile Micelles Self-Adjuvant Group A Streptococcal Vaccination

  • Amanda Trent
  • Bret D. Ulery
  • Matthew J. Black
  • John C. Barrett
  • Simon Liang
  • Yulia Kostenko
  • Natalie A. David
  • Matthew V. Tirrell
Research Article Theme: Nanoparticles in Vaccine Delivery
Part of the following topical collections:
  1. Theme: Nanoparticles in Vaccine Delivery

Abstract

Delivery system design and adjuvant development are crucially important areas of research for improving vaccines. Peptide amphiphile micelles are a class of biomaterials that have the unique potential to function as both vaccine delivery vehicles and self-adjuvants. In this study, peptide amphiphiles comprised of a group A streptococcus B cell antigen (J8) and a dialkyl hydrophobic moiety (diC16) were synthesized and organized into self-assembled micelles, driven by hydrophobic interactions among the alkyl tails. J8-diC16 formed cylindrical micelles with highly α-helical peptide presented on their surfaces. Both the micelle length and secondary structure were shown to be enhanced by annealing. When injected into mice, J8-diC16 micelles induced a strong IgG1 antibody response that was comparable to soluble J8 peptide supplemented with two classical adjuvants. It was discovered that micelle adjuvanticity requires the antigen be a part of the micelle since separation of J8 and the micelle was insufficient to induce an immune response. Additionally, the diC16 tail appears to be non-immunogenic since it does not stimulate a pathogen recognition receptor whose agonist (Pam3Cys) possesses a very similar chemical structure. The research presented in this paper demonstrates the promise peptide amphiphile micelles have in improving the field of vaccine engineering.

KEY WORDS

group A streptococcus J8 peptide peptide amphiphile micelles self-adjuvant vaccine 

References

  1. 1.
    Tart AH, Walker MJ, Musser JM. New understanding of the group A streptococcus pathogenesis cycle. Trends Microbiol. 2007;15(7):318–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Eison TM, Ault BH, Jones DP, Chesney RW, Wyatt RJ. Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol. 2011;26(2):165–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Lawrence RS. Vaccines for the 21st century: a tool for decision making. Washington, D.C.: National Academies Press; 2000.Google Scholar
  5. 5.
    Steer AC, Batzloff MR, Mulholland K, Carapetis JR. Group A streptococcal vaccines: facts versus fantasy. Curr Opin Infect Dis. 2009;22(6):544–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Sagar V, Bergmann R, Nerlich A, McMillan DJ, Nitsche-Schmitz DP, Chhatwal GS. Variability in the distribution of genes encoding virulence factors and putative extracellular proteins of Streptococcus pyogenes in India, a region with high streptococcal disease burden, and implication for development of a regional multisubunit vaccine. Clin Vaccine Immunol. 2012;19(11):1818–25.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Persson J, Beall B, Linse S, Lindahl G. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein. PLoS Pathog. 2006;2(5):e47.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lymbury RS, Olive C, Powell KA, Good MF, Hirst RG, LaBrooy JT, et al. Induction of autoimmune valvulitis in Lew rats following immunization with peptides from the conserved region of group A streptococcal M protein. J Autoimmun. 2003;20(3):211–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Olive C, Sun HK, Ho MF, Dyer J, Horvath A, Toth I, et al. Intranasal administration is an effective mucosal vaccine delivery route for self-adjuvanting lipid core peptides targeting the group A streptococcal M protein. J Infect Dis. 2006;194(3):316–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Pandey M, Wykes MN, Hartas J, Good MF, Batzloff MR. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T cell help. J Immunol. 2013;190(6):2692–701.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Relf WA, Cooper J, Brandt ER, Hayman WA, Anders RF, Pruksakorn S, et al. Mapping a conserved conformational epitope from the M protein of group A streptococci. Pept Res. 1996;9(1):12–20.PubMedGoogle Scholar
  12. 12.
    Hayman WA, Brandt ER, Relf WA, Cooper J, Saul A, Good MF. Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus. Int Immunol. 1997;9(11):1723–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines. 2010;9(2):157–73.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Simerska P, Abdel-Aal AB, Fujita Y, Moyle PM, McGeary RP, Olive C, et al. Development of a liposaccharide-based delivery system and its application to the design of group A streptococcal vaccines. J Med Chem. 2008;51(5):1447–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Middelberg AP, Rivera-Hernandez T, Wibowo N, Lua LH, Fan Y, Magor G, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine. 2011;29(41):7154–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Pandey M, Batzloff MR, Good MF. Mechanism of protection induced by group A streptococcus vaccine candidate J8-DT: contribution of B and T-cells toward protection. PLoS One. 2009;4(4):e5147.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Azmi F, Fuaad AAA, Skwarczynski M, Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccines Immunother. 2013;10(3):27332.Google Scholar
  18. 18.
    Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Webber MJ, Tongers J, Newcomb CJ, Marquardt KT, Bauersachs J, Losordo DW, et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci U S A. 2011;108(33):13438–43.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Mammadov R, Mammadov B, Toksoz S, Aydin B, Ragci Y, Tekinay AB, et al. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules. 2011;12(10):3508–19.PubMedCrossRefGoogle Scholar
  21. 21.
    Anderson JM, Kushwaha M, Tambralli A, Bellis SL, Camata RP, Jun HW. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules. 2009;10(10):2935–44.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mata A, Geng Y, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, et al. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials. 2010;31(23):6004–12.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Song Y, Li Y, Zheng Q, Wu K, Guo X, Wu Y, et al. Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels. J Biomater Sci Polym Ed. 2011;22(4–6):475–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Angeloni NL, Bond CW, Tang Y, Harrington DA, Zhang S, Stupp SI, et al. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials. 2011;32(4):1091–101.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci U S A. 2009;106(24):9815–9.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Missirlis D, Krogstad DV, Tirrell M. Internalization of p53(14–29) peptide amphiphiles and subsequent endosomal disruption results in SJSA-1 cell death. Mol Pharm. 2010;7(6):2173–84.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Standley SM, Toft DJ, Cheng H, Soukasene S, Chen J, Raja SM, et al. Induction of cancer death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res. 2010;70(8):3020–6.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lim DJ, Antipenko SV, Anderson JM, Jaimes KF, Viera L, Stephen BR, et al. Enhanced rat islet function and survival in vitro using a biomimetic self-assembled nanomatrix gel. Tissue Eng A. 2011;17(3–4):399–406.CrossRefGoogle Scholar
  29. 29.
    Khan S, Sur S, Newcomb CJ, Appelt EA, Stupp SI. Self-assembling glucagon-like peptide 1-mimetic peptide amphiphiles for enhanced activity and proliferation of insulin-secreting cells. Acta Biomater. 2012;8(5):1685–92.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Boato F, Thomas RM, Ghasparian A, Freund-REnard A, Moehle K, Robinson JA. Synthetic virus-like particles from self-assembling coiled-coil lipopeptides and their use in antigen display to the immune system. Angew Chem Int Ed. 2007;46(47):9015–8.CrossRefGoogle Scholar
  31. 31.
    Lee KC, Carlson PA, Goldstein AS, Yager P, Gelb MH. Protection of a decapeptide from proteolytic cleavage by lipidation and self-assembly into high-axial-ratio microstructures: a kinetic and structural study. Langmuir. 1999;15(17):5500–8.CrossRefGoogle Scholar
  32. 32.
    Missirlis D, Khant H, Tirrell M. Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro. Biochemistry. 2009;48(15):3304–14.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Black M, Trent A, Kostenko Y, Lee JS, Olive C, Tirrell M. Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv Mater. 2012;24(28):3845–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Berndt P, Fields GB, Tirrell M. Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc. 1995;117(37):9515–22.CrossRefGoogle Scholar
  35. 35.
    Kastantin M, Ananthanarayanan B, Karmali P, Ruoslahti E, Tirrell M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir. 2009;25(13):7279–86.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Mlinar LB, Chung EJ, Wonder EA, Tirrell M. Active targeting of early and mid-stage atherosclerosis plaques using self-assembled peptide amphiphile micelles. BIomaterials. 2014;35(30):8678–86.PubMedCrossRefGoogle Scholar
  37. 37.
    Greenfield NJ, Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969;8(10):4108–16.PubMedCrossRefGoogle Scholar
  38. 38.
    Skwarcynski M, Kamaruzaman KA, Srinivasan S, Zaman M, Lin IC, Batzloff MR, et al. M-protein-derived conformational peptide epitope vaccine candidate against group A streptococcus. Curr Drug Deliv. 2013;10(1):39–45.CrossRefGoogle Scholar
  39. 39.
    Jackson DC, Lau YF, Le T, Suhrbier A, Deliyannis G, Cheers C, et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci U S A. 2004;101(43):15440–5.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Pashuck ET, Stupp SI. Direct observation of morphological transformation from twisted ribbons into helical ribbons. J Am Chem Soc. 2010;132(26):8819–21.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gore T, Dori Y, Talmon Y, Tirrell M, Biance-Peled H. Self-assembly of model collagen peptide amphiphiles. Langmuir. 2001;17(17):5352–60.CrossRefGoogle Scholar
  42. 42.
    Shimada T, Lee S, Bates FS, Hotta A, Tirrell M. Wormlike micelle formation in peptide-lipid conjugates driven by secondary structure transformation of the headgroups. J Phys Chem B. 2009;113(42):13711–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Ghendon Y, Markushin S, Akopova I, Koptiaeva I, Krivtsov G. Chitosan as an adjuvant for poliovaccine. J Med Virol. 2011;83(5):847–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Allard-Vannier E, Cohen-Jonathan S, Gautlier J, Herve-Aubert K, Munnier E, Souce M, et al. Pegylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm. 2012;81(3):498–505.PubMedCrossRefGoogle Scholar
  45. 45.
    Narayanan D, Anitha A, Jayakumar R, Nair SV, Chennazhi KP. Synthesis, characterization and preliminary in vitro evaluation of PTH 1–34 loaded chitosan nanoparticles for osteoporosis. J Biomed Nanotechnol. 2012;8(1):98–106.PubMedCrossRefGoogle Scholar
  46. 46.
    Gosens I, Post JA, Fonteyne LJDL, Jansen EH, Geus JW, Cassee FR, et al. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 2010;7(1):37.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wu J, Kamaly N, Shi J, Zhao L, Xiao Z, Hollett G, et al. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew Chem Int Ed. 2014;53(34):8975–9.CrossRefGoogle Scholar
  48. 48.
    Yao B, Zheng D, Liang S, Zhang C. Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PLoS One. 2013;8(4):e62249.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. Coiled-coil irregularities and instabilities in group A streptococcus M1 are required for virulence. Science. 2008;319(5868):1405–8.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Tu RS, Marullo R, Pynn R, Bitton R, Bianco-Peled H, Tirrell MV. Cooperative DNA binding and assembly by a bZip peptide-amphiphile. Soft Matter. 2010;6:1035–44.CrossRefGoogle Scholar
  51. 51.
    Trent A, Marullo R, Lin B, Black M, Tirrell M. Structural properties of soluble peptide amphiphile micelles. Soft Matter. 2011;7:9572–82.CrossRefGoogle Scholar
  52. 52.
    Marullo R, Kastantin M, Drews LB, Tirrell M. Peptide contour length determines equilibrium secondary structure in protein-analogous micelles. Biopolymers. 2013;99(9):573–81.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Hansmann UHE, Masuya M, Okamoto Y. Characteristic temperatures of folding of a small peptide. Proc Natl Acad Sci U S A. 1997;94(20):10652–6.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Nagarajan R. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir. 2002;18(1):31–8.CrossRefGoogle Scholar
  55. 55.
    Satoh M, Kuroda Y, Yoshida H, Behney KM, Mizutani A, Akaogi J, et al. Induction of lupus autoantibodies by adjuvants. J Autoimmun. 2003;21(1):1–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Kuroda Y, Nacionales DC, Akaogi J, Reeves WH, Satoh M. Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed Pharmacother. 2004;58(5):325–37.PubMedCrossRefGoogle Scholar
  57. 57.
    Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang X-F, et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med. 2013;19(4):465–72.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Schunk MK, Macallum GE. Applications and optimization of immunization procedures. ILAR J. 2005;46(3):241–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Zaman M, Abdel-Aal AB, Fujita Y, Phillipps KS, Batzloff MR, Good MF, et al. Immunological evaluation of lipopeptide group A streptococcus (GAS) vaccine: structure-activity relationship. PLoS One. 2012;7(1):e30146.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Rudra JS, Tian YF, Jung JP, Collier JH. A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A. 2010;107(2):622–7.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R, Sun T, et al. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials. 2013;34(34):8776–85.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Amanda Trent
    • 1
  • Bret D. Ulery
    • 2
    • 3
  • Matthew J. Black
    • 4
  • John C. Barrett
    • 3
    • 5
  • Simon Liang
    • 6
  • Yulia Kostenko
    • 7
  • Natalie A. David
    • 6
  • Matthew V. Tirrell
    • 3
  1. 1.Biomolecular Science and Engineering ProgramUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Chemical EngineeringUniversity of MissouriColumbiaUSA
  3. 3.Institute for Molecular EngineeringUniversity of ChicagoChicagoUSA
  4. 4.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  5. 5.Biophysical Sciences Graduate ProgramUniversity of ChicagoChicagoUSA
  6. 6.Division of Biological SciencesUniversity of ChicagoChicagoUSA
  7. 7.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations