The AAPS Journal

, Volume 17, Issue 1, pp 44–64 | Cite as

Summary Report of PQRI Workshop on Nanomaterial in Drug Products: Current Experience and Management of Potential Risks

  • Jeremy A. Bartlett
  • Marcus Brewster
  • Paul Brown
  • Donna Cabral-Lilly
  • Celia N. CruzEmail author
  • Raymond David
  • W. Mark Eickhoff
  • Sabine Haubenreisser
  • Abigail Jacobs
  • Frank Malinoski
  • Elaine Morefield
  • Ritu Nalubola
  • Robert K. Prud’homme
  • Nakissa Sadrieh
  • Christie M. Sayes
  • Hripsime Shahbazian
  • Nanda Subbarao
  • Lawrence Tamarkin
  • Katherine Tyner
  • Rajendra Uppoor
  • Margaret Whittaker-Caulk
  • William Zamboni
Meeting Report Theme: Nanotechnology in Drug Development
Part of the following topical collections:
  1. Theme: Nanotechnology in Drug Development


At the Product Quality Research Institute (PQRI) Workshop held last January 14–15, 2014, participants from academia, industry, and governmental agencies involved in the development and regulation of nanomedicines discussed the current state of characterization, formulation development, manufacturing, and nonclinical safety evaluation of nanomaterial-containing drug products for human use. The workshop discussions identified areas where additional understanding of material attributes, absorption, biodistribution, cellular and tissue uptake, and disposition of nanosized particles would continue to inform their safe use in drug products. Analytical techniques and methods used for in vitro characterization and stability testing of formulations containing nanomaterials were discussed, along with their advantages and limitations. Areas where additional regulatory guidance and material characterization standards would help in the development and approval of nanomedicines were explored. Representatives from the US Food and Drug Administration (USFDA), Health Canada, and European Medicines Agency (EMA) presented information about the diversity of nanomaterials in approved and newly developed drug products. USFDA, Health Canada, and EMA regulators discussed the applicability of current regulatory policies in presentations and open discussion. Information contained in several of the recent EMA reflection papers was discussed in detail, along with their scope and intent to enhance scientific understanding about disposition, efficacy, and safety of nanomaterials introduced in vivo and regulatory requirements for testing and market authorization. Opportunities for interaction with regulatory agencies during the lifecycle of nanomedicines were also addressed at the meeting. This is a summary of the workshop presentations and discussions, including considerations for future regulatory guidance on drug products containing nanomaterials.


nanomaterials nanomedicine nanotechnology PQRI risk management USFDA 



American Association of Pharmaceutical Scientists


absorption, distribution, metabolism, and excretion


atomic emission spectroscopy


active pharmaceutical ingredient


active substance masterfile


American Society for Testing and Materials


area under the curve


Biopharmaceutical Classification System


Center for Drug Evaluation and Research (at USFDA)


Conformité Européenne


Code of Federal Regulations (United States)


Center for Food Safety and Applied Nutrition (at USFDA)


current good manufacturing practices


Committee for Medicinal Products for Human Use (at EMA)


Council for International Organizations of Medicinal Sciences


chemistry, manufacturing, and controls


critical quality attributes


coefficient of variance


dynamic light scattering


drug master file


Drug Submission Tracking System (Health Canada)


European Directorate for the Quality of Medicines & Healthcare


energy dispersive X-ray spectroscopy


electron microscope


European Medicines Agency


European Union


generally recognized as safe


Health Canada’s Health Products and Food Branch


International Cooperation on Cosmetic Regulation


International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use


inductively coupled plasma


isoelectric point


Investigational New Drug application


International Organization for Standardization


Innovation Task Force (at EMA)








mononuclear phagocyte system


National Cancer Institute


New Drug Application


nongovernmental organization






nanoparticle tracking analysis


Organization for Economic Co-operation and Development




polyethylene glycol




PEGylated liposomal doxorubicin


Product Quality Research Institute


quality by design


research and development


Canada-US Regulatory Cooperation Council


reticuloendothelial system


small- or medium-sized enterprise (EMA)


scale-up and post-approval changes


Therapeutic Goods Administration (Australia)


tumor necrosis factor alpha


Therapeutic Products Classification Committee (at Health Canada)


United States Food and Drug Administration


United States Pharmacopeia


Working Party on Manufactured Nanomaterials (at the OECD)



The authors would like to thank Don Henry from USFDA and Vicky Penn from PQRI for their organization efforts on this workshop. The authors would also like to thank Drs. Susan Ciotti and Stephen Gracon, NanoBio Corporation, for their presentation on nanoemulsions, which is the basis for the topical case study discussed in this paper. The authors would also like to thank Professor Marisa Papaluca-Amati and Dr. Falk Ehmann, both from the EMA, Scientific Support, for their remote participation in the Q&A session on the “EMA Perspective on the Development of Nanomedicines.”


  1. 1.
    PQRI Workshop: Nanomaterial in Drug Products Current Experience and Risk Management. January 14–15, 2014, USP Meeting Center, Rockville, MD. Final Program Agenda at: Accessed 21 Aug 2014.
  2. 2.
    Cruz CN, Tyner KM, Velezquez L, Hyams K, Jacobs A, Shaw A, et al. CDER risk assessment exercise to evaluate potential risks from the use of nanomaterials in drug products. AAPS J. 2013;15(3):623–8. doi: 10.1208/s12248-013-9466-6.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    FDA’s approach to regulation of nanotechnology products. Available online at:; see also Hamburg, 2012. Science 336:299–300. Accessed 21 Aug 2014.
  4. 4.
    Office of Science and Technology Policy, Office of Management and Budget, and the United States Trade Representative. Principles for regulation and oversight of emerging technologies, March 11, 2011; available online at: Accessed 21 Aug 2014.
  5. 5.
    Office of Science and Technology Policy, Office of Management and Budget, and the United States Trade Representative. Policy principles for the U.S. decision-making concerning regulation and oversight of applications of nanotechnology and nanomaterials, June 9, 2011; available online at: Accessed 21 Aug 2014.
  6. 6.
    Final guidance for industry: considering whether an FDA-regulated product involves the application of nanotechnology, June 2014. Available online at: Accessed 21 Aug 2014.
  7. 7.
    FDA guidance on nanotechnology, issued June 2014; Available online at: Accessed 05 Nov 2014.
  8. 8.
    FDA’s nanotechnology regulatory science research plan (accessible at: Accessed 21 Aug 2014.
  9. 9.
    Policy Statement on Health Canada’s working definition for nanomaterial—available online at: Accessed 21 Aug 2014.
  10. 10.
    Nanotechnology-based health products and food page—available online at: Accessed 21 Aug 2014.
  11. 11.
    Drug Submission Application Form for Human, Veterinary, Disinfectant Drugs and Clinical Trial Application/Attestation (HC/SC 3011)—available online at: Accessed 05 Nov 2014.
  12. 12.
    Next-generation nanomedicines and nanosimilars: EU regulators’ initiatives relating to the development and evaluation of nanomedicines. Available online at: Accessed 21 Aug 2014 and published in Nanomedicine (2013) 8(5), 849–856, doi: 10.2217/nnm.13.68.
  13. 13.
  14. 14.
    EMA draft reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. Available online at: Accessed 21 Aug 2014.
  15. 15.
    The draft reflection paper on Data requirements for intravenous iron-based nano-colloidal products. Available online at: Accessed 21 Aug 2014.
  16. 16.
    The joint EMA/MHLW reflection paper on block copolymer micelle medicinal products. Available online at: Accessed 21 Aug 2014.
  17. 17.
    The EMA reflection paper on surface coating. Available online at: Accessed 21 Aug 2014.
  18. 18.
    Innovation Task Force (ITF) Accessed 21 Aug 2014.
  19. 19.
    EMA guidance for companies requesting scientific advice or protocol assistance. Available online at: Accessed 21 Aug 2014.
  20. 20.
    CHMP Scientific Advice and Novel methods qualification (e.g., biomarker): Accessed 21 Aug 2014.
  21. 21.
  22. 22.
  23. 23.
    Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;25:91–7.CrossRefGoogle Scholar
  24. 24.
    Petrelli F, Borgonova K, Barni S. Targeted delivery for breast cancer therapy: the history of nano-article-albumin-bound paclitaxel. Expert Opin Pharmacother. 2010;11:1413–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Zolnik BS, Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev. 2009;61:422–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Sultana S, Khan MR, Kumar M, Kumar S, Ali M. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target. 2013;21:107–25.CrossRefPubMedGoogle Scholar
  27. 27.
    Sayes CM. The relationships among structure, activity, and toxicity of engineered nanoparticles. KONA Powder Part J. 2014;31:10.CrossRefGoogle Scholar
  28. 28.
    D’Addio SM, Prud’homme RK. Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev. 2011;63(6):417–26. doi: 10.1016/j.addr.2011.04.005.CrossRefPubMedGoogle Scholar
  29. 29.
    Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007;129(10):2871–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Sayes CM, Fortner JD, Guo W, Lyon D, Boyd D, Ausman K, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004;4(10):1881–7.CrossRefGoogle Scholar
  31. 31.
    Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 2007;97(1):163–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Boyd BJ. Past and future evolution in colloidal drug delivery systems. Expert Opin Drug Deliv. 2008;5(1):69–85.CrossRefPubMedGoogle Scholar
  33. 33.
    Leroux JC, Allemann E, Jaeghere FD, Doelker E, Gurny R. Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery. J Control Release. 1996;39(2–3):339–50. doi: 10.1016/0168-3659(95)00164-6.CrossRefGoogle Scholar
  34. 34.
    Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.CrossRefPubMedGoogle Scholar
  35. 35.
    Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27(24):4356–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Choi SW, Kim WS, Kim JH. Surface modification of functional nanoparticles for controlled drug delivery. J Dispers Sci Technol. 2003;24(3–4):475–87.CrossRefGoogle Scholar
  38. 38.
    Dawson KA, Salvati A, Lynch I. Nanotoxicology: nanoparticles reconstruct lipids. Nat Nanotechnol. 2009;4:84–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Monopoli MP, Bombelli FB, Dawson KA. Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol. 2010;6(1):11–2. doi: 10.1038/nnano.2011.267.CrossRefGoogle Scholar
  40. 40.
    International Harmonization Conference guidelines: Accessed 21 Aug 2014.
  41. 41.
    Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44.CrossRefPubMedGoogle Scholar
  42. 42.
    Chen H, Khemtong C, Yang X, Chsang X, Gao J. Nanonozation strategies for poorly water-soluble drugs. Drug Discov Today. 2011;16:354–60.CrossRefPubMedGoogle Scholar
  43. 43.
    Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2012;30:307–24.CrossRefPubMedGoogle Scholar
  44. 44.
    Narang A, Chang R, Hussain M. Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems. J Pharm Sci. 2013;102(11):3867–82. doi: 10.1002/jps.23661.CrossRefPubMedGoogle Scholar
  45. 45.
    Moschwitzer J. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453:142–56.CrossRefPubMedGoogle Scholar
  46. 46.
    Kayaert P, Anne M, Van den Mooter G. Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in vitro release from sugar sphere. J Pharm Pharmacol. 2011;63:1446–53.CrossRefPubMedGoogle Scholar
  47. 47.
    Chaubal M, Popescu C. Conversions of nanosuspensions in to into dry powders by spray drying: a case study. Pharm Res. 2008;25:2302–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Dicko A, Frazier AA, Liboiron BD, Hindeliter A, et al. Intra- and inter-molecular interactions dictate the aggregation state of irinotecan co-encapsulated with floxuridine inside liposomes. Pharm Res. 2008;25:1702–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Gilday E, Nasrallah H. Clinical pharmacology of paliperidone palmitate—a parenteral long acting formulation for the treatment of schizophrenia. Rev Recent Clin Trials. 2011;7(1):2–9.CrossRefGoogle Scholar
  50. 50.
    Shegokar R, Muller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1–2):129–39.CrossRefPubMedGoogle Scholar
  51. 51.
    Muller R, Keck C. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113:151–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Merisko-Liversidge E, Liversidge G. Nanosizing oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63:427–40.CrossRefPubMedGoogle Scholar
  53. 53.
    Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62:1569–79.CrossRefPubMedGoogle Scholar
  54. 54.
    Singare D, Marella S, Gowthamarjan K, Kulkarni G, Vooturi R, Rao P. Optimization of formulation and process variables of nanosuspensions: an industrial perspective. Int J Pharm. 2010;402:213–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Feldman EJ, Lancet JE, Kolitz JE, Ritchie EK, Roboz GJ, List AF, et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol. 2011;29:979–85. doi: 10.1200/JCO.2010.30.5961.CrossRefPubMedGoogle Scholar
  56. 56.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11:169–83.CrossRefPubMedGoogle Scholar
  57. 57.
    Libutti SK, Paciotti GF, Byrnes AA, Alexander Jr HR, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16(24):6139–49.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Kingston DGI, Tamarkin L, Paciotti GF. Conformationally constrained and nanoparticle-targeted paclitaxels. Pure Appl Chem. 2012;10:1361–74.Google Scholar
  59. 59.
    Muller RH, Gohla S, Keck CM. State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular deliver. Eur J Pharm Biopharm. 2011;78:1–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, et al. Best practice s in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res. 2012;18(12):3229–41. doi: 10.1158/1078-0432.CCR-11-2938.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8(6):2101–41.CrossRefPubMedGoogle Scholar
  62. 62.
    Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol. 2004;31(6 Suppl 13):196–205.CrossRefPubMedGoogle Scholar
  63. 63.
    Zamboni WC, Yoshino K. Formulation and physiologic factors affecting the pharmacokinetics and pharmacodynamics of liposomal agents. Drug Deliv Syst. 2010;25(1):58–70.Google Scholar
  64. 64.
    Caron WP, Song G, Kumar P, Rawal S, Zamboni WC. Pharmacokinetic and pharmacodynamic disposition of carrier-mediated agents. Clin Pharmacol Ther. 2012;91(5):802–12.CrossRefPubMedGoogle Scholar
  65. 65.
    Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, et al. Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immunol. 2012;4(5–6):509–28.CrossRefGoogle Scholar
  66. 66.
    Kumar P, Caron WP, Song G, Rawal S, Zamboni WC. Nanoparticle effects on the interaction with cells of the mononuclear phagocytic system. In: Dobrovolskaia M, editor. Immunological properties of engineered nanomaterials. First edition. World Scientific, in press. 2013.Google Scholar
  67. 67.
    Caron WP, Lay JC, Fong AM, La-Beck NM, Kumar P, Newman SE, et al. Translational studies of phenotypic probes for the mononuclear phagocyte system and liposomal pharmacology. J Pharmacol Exp Ther. 2013;347(3):599–606. doi: 10.1124/jpet.113.208801.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Schell RF, Sidone BJ, Caron WP, Walsh MD, White TF, Zamboni BA, et al. Meta-analysis of inter-patient pharmacokinetic variability of liposomal and non-liposomal anticancer agents. Nanomedicine. 2014;10:109–17.CrossRefPubMedGoogle Scholar
  69. 69.
    Zamboni WC, Strychor S, Maruca L, Ramalingam S, Zamboni BA, Wu H, et al. Pharmacokinetic study of pegylated liposomal CKD-602 (S-CKD602) in patients with advanced malignancies. Clin Pharmacol Ther. 2009;86(5):519–26. doi: 10.1038/clpt.2009.141.CrossRefPubMedGoogle Scholar
  70. 70.
    Gabizon A, Isacson R, Rosengarten O, Tzemach D, Shmeeda H, Sapir R. An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol. 2008;61(4):695–702.CrossRefPubMedGoogle Scholar
  71. 71.
    La-Beck NM, Zamboni BA, Gabizon A, Schmeeda H, Amantea M, Gehrig PA, et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother Pharmacol. 2012;69(1):43–50.CrossRefPubMedGoogle Scholar
  72. 72.
    Wu H, Ramanathan RK, Zamboni BA, Strychor S, Ramalingam S, Edwards RP, et al. Mechanism-based model characterizing bidirectional interaction between PEGylated liposomal CKD-602 (S-CKD602) and monocytes in cancer patients. Int J Nanomedicine. 2012;7:5555–64. doi: 10.2147/IJN.S35751.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Zamboni WC, Maruca LJ, Strychor S, Zamboni BA, Ramalingam S, Edwards RP, et al. Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J Liposome Res. 2011;21(2):158–65. doi: 10.3109/08982104.2010.496085.CrossRefPubMedGoogle Scholar
  74. 74.
    Charrois GJ, Allen TM. Multiple injections of pegylated liposomal doxorubicin: pharmacokinetics and therapeutic activity. J Pharmacol Exp Ther. 2003;306(3):1058–67.CrossRefPubMedGoogle Scholar
  75. 75.
    Suzuki T, Ichihara M, Hyodo K, Yamamoto E, Ishida T, Kiwada H, et al. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. Int J Pharm. 2012;436(1–2):636–43. doi: 10.1016/j.ijpharm.2012.07.049.CrossRefPubMedGoogle Scholar
  76. 76.
    Crist RM et al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr Biol (Camb). 2013;5:66–73.CrossRefGoogle Scholar
  77. 77.
    Skoczen SL, Potter TM, Dobrovolskaia MA. In vitro analysis of nanoparticle uptake by macrophages using chemiluminescence. Methods Mol Biol. 2011;697:255–61.CrossRefPubMedGoogle Scholar
  78. 78.
    Song G, Moore S, Tarrant T, Dobrovolskaia M, et al. 126: Relationship between complement factors and CC chemokines and the pharmacokinetics (PK) and pharmacodynamics (PD) of PEGylated liposomal doxorubicin (PLD) in patients with refractory epithelial ovarian cancer (EOC). Eur J Cancer. 2012;48 SUPPL 6:39–40.CrossRefGoogle Scholar
  79. 79.
    Kumar P, Caron WP, Song G, Gallagher K, et al. Relationship between serum hormone levels and pharmacokinetics (PK) of PEGylated liposomal doxorubicin (PLD) in patients with refractory ovarian cancer. Cancer Res. 2012;72(8 SUPPL 1). doi:  10.1158/1538-7445.AM2012-2673
  80. 80.
    Caron WP, Song G, Kumar P, Rawal S, Zamboni WC. Interpatient pharmacokinetic and pharmacodynamic variability of carrier-mediated anticancer agents. Clin Pharmacol Ther. 2012;91:802–12.CrossRefPubMedGoogle Scholar
  81. 81.
    Maeda H, Nakamura N, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973;36:292–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Birrenbach G, Speiser PP. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci. 1976;65:1763–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Juliano RL, Stamp D. Pharmacokinetics of liposome-encapsulated anti-tumor drugs: studies with vinblastine, actinomycin D, cytosine, arabinoside, and daunomycin. Biochem Pharmacol. 1978;27:21–7.CrossRefPubMedGoogle Scholar
  85. 85.
    FDA guidance for industry: nonclinical studies for the safety evaluation of pharmaceutical excipients: May 2005: Accessed 21 Aug 2014.
  86. 86.
    FDA Draft Guidance for Industry: liposome drug products: CMC, human pharmacokinetic and bioavailability; and labeling documentation: August 2002: Accessed 21 Aug 2014.
  87. 87.
    FDA draft guidance on doxorubicin hydrochloride: November 2013. Accessed 21 Aug 2014.
  88. 88.
    FDA draft guidance on iron sucrose: November 2013: Accessed 21 Aug 2014.
  89. 89.
    FDA draft guidance on aprepitant: November 2008 Accessed 21 Aug 2014.
  90. 90.
  91. 91.
    Draft Guidance for Industry and FDA Staff: Classification of products as drugs and devices & additional product classification issues, June 2011. Available from Office of Combination Products: Accessed 21 Aug 2014. At: Accessed 21 Aug 2014.
  92. 92.
    Guidance document: factors influencing the classification of products at the device-drug interface available online at: Accessed 21 Aug 2014.
  93. 93.
    Drug/medical device combination products: Accessed 21 Aug 2014.
  94. 94.
    Health Canada draft guidance document—drug master files (DMFs) is available at: Accessed 21 Aug 2014.
  95. 95.
    FDA guidance for industry: formal meetings between the FDA and sponsors or applicants: May 2009: Accessed 21 Aug 2014.
  96. 96.
    Health Canada guidance for industry: food and drugs act and regulations: Accessed 21 Aug 2014.
  97. 97.
    Commission Recommendation 2011/696/EU, OJ L 275, 20.10.2011. Available online at:
  98. 98.
    Van Buskirk GA, Asotra S, Balducci C, Basu P, DiDonato G, Dorantes A, et al. Best practices for the development, scale-up, and post-approval change control of IR and MR dosage forms in the current quality-by-design paradigm. AAPS Pharm Sci Technol. 2014;15:665–93. doi: 10.1208/s12249-014-0087-x.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Jeremy A. Bartlett
    • 1
  • Marcus Brewster
    • 2
  • Paul Brown
    • 3
  • Donna Cabral-Lilly
    • 4
  • Celia N. Cruz
    • 3
    • 5
    Email author
  • Raymond David
    • 6
  • W. Mark Eickhoff
    • 7
  • Sabine Haubenreisser
    • 8
  • Abigail Jacobs
    • 3
  • Frank Malinoski
    • 9
  • Elaine Morefield
    • 10
  • Ritu Nalubola
    • 11
  • Robert K. Prud’homme
    • 12
  • Nakissa Sadrieh
    • 13
  • Christie M. Sayes
    • 14
  • Hripsime Shahbazian
    • 15
  • Nanda Subbarao
    • 16
  • Lawrence Tamarkin
    • 17
  • Katherine Tyner
    • 3
  • Rajendra Uppoor
    • 3
  • Margaret Whittaker-Caulk
    • 3
  • William Zamboni
    • 18
    • 19
  1. 1.PfizerGroton LaboratoriesGrotonUSA
  2. 2.Janssen Pharmaceutica, Johnson and JohnsonBeerseBelgium
  3. 3.Center for Drug Evaluation and ResearchUnited States Food and Drug AdministrationSilver SpringUSA
  4. 4.Celator Pharmaceuticals, Inc.EwingUSA
  5. 5.United States Food and Drug AdministrationSilver SpringUSA
  6. 6.BASF CorporationEcology and SafetyFlorham ParkUSA
  7. 7.Merck and Co.West PointUSA
  8. 8.European Medicines AgencyLondonUK
  9. 9.Nanomedicines AllianceWashingtonUSA
  10. 10.Vertex Pharmaceuticals IncorporatedBostonUSA
  11. 11.Office of the CommissionerUnited States Food and Drug AdministrationSilver SpringUSA
  12. 12.Chemical and Biological Engineering, School of Engineering and Applied SciencePrinceton UniversityPrincetonUSA
  13. 13.Center for Food Safety and Applied NutritionUnited States Food and Drug AdministrationSilver SpringUSA
  14. 14.RTI InternationalResearch Triangle ParkUSA
  15. 15.Health Canada, Health Protection BranchOttawaCanada
  16. 16.Biologics Consulting GroupAlexandriaUSA
  17. 17.CytImmuneRockvilleUSA
  18. 18.UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology ExcellenceUniversity of North CarolinaChapel HillUSA
  19. 19.Wildcat Pharmaceutical Development CenterHoustonUSA

Personalised recommendations