Skip to main content

Advertisement

Log in

Lipid-Based Drug Carriers for Prodrugs to Enhance Drug Delivery

  • Review Article
  • Theme: Chemical, Pharmacologic, and Clinical Perspectives of Prodrugs
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

The combination of lipid drug delivery systems with prodrugs offers several advantages including improved pharmacokinetics, increased absorption, and facilitated targeting. Lipidization and use of lipid carriers can increase the pharmacological half-life of the drug, thus improving pharmacokinetics and allowing less frequent dosing. Lipids also offer advantages such as increased absorption through the intestines for oral drug absorption and to the CNS for brain delivery. Furthermore, the use of lipid delivery systems can enhance drug targeting. Endogenous proteins bind lipids in the blood and carry them to the liver to enable targeting of this organ. Drugs with significant side effects in the stomach can be specifically delivered to enterocytes by exploiting lipases for prodrug activation. Finally, lipids can be used to target the lymphatic system, thus bypassing the liver and avoiding first-pass metabolism. Lymphatic targeting is also important for antiviral drugs in the protection of B and T lymphocytes. In this review, both lipid-drug conjugates and lipid-based carriers will be discussed. An overview, including the chemistry and assembly of the systems, as well as examples from the clinic and in development, will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith DA, Brown K, Neale MG. Chromone-2-carboxylic acids: roles of acidity and lipophilicity in drug disposition. Drug Metab Rev. 1985;16(4):365–88.

    Article  PubMed  Google Scholar 

  2. van der Vusse GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009;24(4):300–7.

    Article  PubMed  Google Scholar 

  3. Hackett MJ, Zaro JL, Shen WC, Guley PC, Cho MJ. Fatty acids as therapeutic auxiliaries for oral and parenteral formulations. Adv Drug Deliv Rev. 2013;65(10):1331–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wermuth CG GJ-C, Marchandeau C. Designing prodrugs and bioprecursors I: carrier prodrugs. In: CG W, editor. The practice of medicinal chemistry. London: Academic; 1996. p. 671–96.

    Google Scholar 

  5. Clayton JP, Cole M, Elson SW, Ferres H. BRL.8988 (talampicillin), a well-absorbed oral form of ampicillin. Antimicrob Agents Chemother. 1974;5(6):670–1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Minto CF, Howe C, Wishart S, Conway AJ, Handelsman DJ. Pharmacokinetics and pharmacodynamics of nandrolone esters in oil vehicle: effects of ester, injection site and injection volume. J Pharmacol Exp Ther. 1997;281(1):93–102.

    CAS  PubMed  Google Scholar 

  7. Christie WW, editor. Advances in lipid methodology. Dundee: Oily Press; 1993.

    Google Scholar 

  8. Taylor MD. Improved passive oral delivery via prodrugs. Adv Drug Deliv Rev. 1996;19(2):131–48.

    Article  CAS  Google Scholar 

  9. Yanez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011;63(10–11):923–42.

    Article  CAS  PubMed  Google Scholar 

  10. Charbon V, Latour I, Lambert DM, Buc-Calderon P, Neuvens L, De Keyser JL, et al. Targeting of drug to the hepatocytes by fatty acids. Influence of the carrier (albumin or galactosylated albumin) on the fate of the fatty acids and their analogs. Pharm Res. 1996;13(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  11. Sasson K, Marcus Y, Lev-Goldman V, Rubinraut S, Fridkin M, Shechter Y. Engineering prolonged-acting prodrugs employing an albumin-binding probe that undergoes slow hydrolysis at physiological conditions. J Control Release : Off J Control Release Society. 2010;142(2):214–20.

    Article  CAS  Google Scholar 

  12. Caliph SM, Charman WN, Porter CJ. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci. 2000;89(8):1073–84.

    Article  CAS  PubMed  Google Scholar 

  13. Paris GY, Garmaise DL, Cimon DG, Swett L, Carter GW, Young P. Glycerides as prodrugs. 2. 1,3-Dialkanoyl-2-(2-methyl-4-oxo-1,3-benzodioxan-2-yl)glycerides (cyclic aspirin triglycerides) as antiinflammatory agents. J Med Chem. 1980;23(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  14. Paris GY, Garmaise DL, Cimon DG, Swett L, Carter GW, Young P. Glycerides as prodrugs. 3. Synthesis and antiinflammatory activity of [1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetyl]glycerides (indomethacin glycerides). J Med Chem. 1980;23(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  15. Cullen E. Novel anti-inflammatory agents. J Pharm Sci. 1984;73(5):579–89.

    Article  CAS  PubMed  Google Scholar 

  16. Delie F, Couvreur P, Nisato D, Michel JB, Puisieux F, Letourneux Y. Synthesis and in vitro study of a diglyceride prodrug of a peptide. Pharm Res. 1994;11(8):1082–7.

    Article  CAS  PubMed  Google Scholar 

  17. Scriba GK, Lambert DM. Bioavailability of phenytoin and anticonvulsant activity after oral administration of phenytoin-bis-hydroxyisobutyrate to rats. Pharm Res. 1997;14(2):251–3.

    Article  CAS  PubMed  Google Scholar 

  18. Garzonaburbeh A, Poupaert JH, Claesen M, Dumont P, Atassi G. 1,3-Dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable anti-neoplastic agent. J Med Chem. 1983;26(8):1200–3.

    Article  CAS  Google Scholar 

  19. Garzonaburbeh A, Poupaert JH, Claesen M, Dumont P. A lymphotropic prodrug of L-dopa—synthesis, pharmacological properties, and pharmacokinetic behavior of 1,3-dihexadecanoyl-2-[(S)-2-amino-3-(3,4-dihydroxyphenyl)propanoyl]propane-1,2,3-triol. J Med Chem. 1986;29(5):687–91.

    Article  CAS  Google Scholar 

  20. Lambert DM. Rationale and applications of lipids as prodrug carriers. Eur J Pharm Sci : Off J Eur Fed Pharm Sci. 2000;11 Suppl 2:S15–27.

    Article  CAS  Google Scholar 

  21. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  22. Prodrugs: challenges and rewards. New York: Springer; 2007.

  23. Ojima I, Slater JC, Michaud E, Kuduk SD, Bounaud PY, Vrignaud P, et al. Syntheses and structure-activity relationships of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J Med Chem. 1996;39(20):3889–96.

    Article  CAS  PubMed  Google Scholar 

  24. Raub TJ. P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol Pharm. 2006;3(1):3–25.

    Article  CAS  PubMed  Google Scholar 

  25. Ruchelman AL, Houghton PJ, Zhou N, Liu A, Liu LF, LaVoie EJ. 5-(2-aminoethyl)dibenzo[c, h][1,6]naphthyridin-6-ones: variation of n-alkyl substituents modulates sensitivity to efflux transporters associated with multidrug resistance. J Med Chem. 2005;48(3):792–804.

    Article  CAS  PubMed  Google Scholar 

  26. Wechter WJ, Johnson MA, Hall CM, Warner DT, Berger AE, Wenzel AH, et al. ara-Cytidine acrylates. Use of drug design predictors in structure-activity relationship correlation. J Med Chem. 1975;18(4):339–44.

    Article  CAS  PubMed  Google Scholar 

  27. Neil GL, Wiley PF, Manak RC, Moxley TE. Antitumor effect of 1-beta-D-arabinofuranosylcytosine 5′-adamantoate (NSC 117614) in L1210 leukemic mice. Cancer Res. 1970;30(4):1047–54.

    CAS  PubMed  Google Scholar 

  28. Wechter WJ, Gish DT, Greig ME, Gray GD, Moxley TE, Kuentzel SL, et al. Nucleic acids. 16. Orally active derivatives of ara-cytidine. J Med Chem. 1976;19(8):1013–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bergman AM, Kuiper CM, Noordhuis P, Smid K, Voorn DA, Comijn EM, et al. Antiproliferative activity and mechanism of action of fatty acid derivatives of gemcitabine in leukemia and solid tumor cell lines and in human xenografts. Nucleosides Nucleotides Nucleic Acids. 2004;23(8–9):1329–33.

    Article  CAS  PubMed  Google Scholar 

  30. Peters GJ, Voorn DA, Kuiper CM, van der Wilt CL, Noordhuis P, Smid K, et al. Cell specific cytotoxicity and structure-activity relationship of lipophilic 1-B-D-arabinofuranosylcytosine (ara-C) derivatives. Nucleosides Nucleotides. 1999;18(4–5):877–8. Epub 1999/08/05.

    Article  CAS  PubMed  Google Scholar 

  31. Breistol K, Balzarini J, Sandvold ML, Myhren F, Martinsen M, De Clercq E, et al. Antitumor activity of P-4055 (elaidic acid-cytarabine) compared to cytarabine in metastatic and s.c. human tumor xenograft models. Cancer Res. 1999;59(12):2944–9.

    CAS  PubMed  Google Scholar 

  32. Jordheim LP, Cros E, Gouy MH, Galmarini CM, Peyrottes S, Mackey J, et al. Characterization of a gemcitabine-resistant murine leukemic cell line: reversion of in vitro resistance by a mononucleotide prodrug. Clin Cancer Res : Off J Am Assoc Cancer Res. 2004;10(16):5614–21.

    Article  CAS  Google Scholar 

  33. Tobias SC, Borch RF. Synthesis and biological evaluation of a cytarabine phosphoramidate prodrug. Mol Pharm. 2004;1(2):112–6.

    Article  CAS  PubMed  Google Scholar 

  34. Raetz CR, Chu MY, Srivastava S, Turcotte JG. A phospholipid derivative of cytosine arabinoside and its conversion to phosphatidylinositol by animal tissue. Science. 1977;196(4287):303–5.

    Article  CAS  PubMed  Google Scholar 

  35. Ludwig PS, Schwendener RA, Schott H. Synthesis and anticancer activities of amphiphilic 5-fluoro-2′-deoxyuridylic acid prodrugs. Eur J Med Chem. 2005;40(5):494–504.

    Article  CAS  PubMed  Google Scholar 

  36. Peghini PA, Zahner R, Kuster H, Schott H, Schwendener RA. In vitro anti-human immunodeficiency virus and anti-hepatitis B virus activities and pharmacokinetic properties of heterodinucleoside phosphates containing AZT or ddC. Antivir Chem Chemother. 1998;9(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  37. Galmarini CM, Myhren F, Sandvold ML. CP-4055 and CP-4126 are active in ara-C and gemcitabine-resistant lymphoma cell lines. Br J Haematol. 2009;144(2):273–5.

    Article  PubMed  Google Scholar 

  38. Immordino ML, Brusa P, Rocco F, Arpicco S, Ceruti M, Cattel L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J Control Release : off J Controll Release Soc. 2004;100(3):331–46.

    Article  CAS  Google Scholar 

  39. Ali SM, Khan AR, Ahmad MU, Chen P, Sheikh S, Ahmad I. Synthesis and biological evaluation of gemcitabine-lipid conjugate (NEO6002). Bioorg Med Chem Lett. 2005;15(10):2571–4.

    Article  CAS  PubMed  Google Scholar 

  40. Chen P, Chien PY, Khan AR, Sheikh S, Ali SM, Ahmad MU, et al. In-vitro and in-vivo anti-cancer activity of a novel gemcitabine-cardiolipin conjugate. Anti-Cancer Drugs. 2006;17(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  41. Adema AD, Radi M, Daft J, Narayanasamy J, Hoebe EK, Alexander LE, et al. Troxacitabine prodrugs for pancreatic cancer. Nucleosides Nucleotides Nucleic Acids. 2007;26(8–9):1073–7.

    Article  CAS  PubMed  Google Scholar 

  42. Senter PD, Pearce WE, Greenfield RS. Development of a drug-release strategy based on the reductive fragmentation of benzyl carbamate disulfides. J Org Chem. 1990;55(9):2975–8.

    Article  CAS  Google Scholar 

  43. Wang Y, Li L, Jiang W, Yang Z, Zhang Z. Synthesis and preliminary antitumor activity evaluation of a DHA and doxorubicin conjugate. Bioorg Med Chem Lett. 2006;16(11):2974–7.

    Article  CAS  PubMed  Google Scholar 

  44. Kuznetsova L, Chen J, Sun L, Wu XY, Pepe A, Veith JA, et al. Syntheses and evaluation of novel fatty acid-second-generation taxoid conjugates as promising anticancer agents. Bioorg Med Chem Lett. 2006;16(4):974–7.

    Article  CAS  PubMed  Google Scholar 

  45. Hostetler KY, Beadle JR, Hornbuckle WE, Bellezza CA, Tochkov IA, Cote PJ, et al. Antiviral activities of oral 1-O-hexadecylpropanediol-3-phosphoacyclovir and acyclovir in woodchucks with chronic woodchuck hepatitis virus infection. Antimicrob Agents Chemother. 2000;44(7):1964–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Suto T, Miyazawa J, Watanabe Y, Suto K, Yoshida Y, Sakata Y. The effect of YNK-01 (an oral prodrug of cytarabine) on hepatocellular carcinoma. Semin Oncol. 1997;24(6):S6-122–S6-9.

    Google Scholar 

  47. Tauber U, Schroder K, Dusterberg B, Matthes H. Absolute bioavailability of testosterone after oral administration of testosterone-undecanoate and testosterone. Eur J Drug Metab Pharmacokinet. 1986;11(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  48. Horst HJ, Holtje WJ, Dennis M, Coert A, Geelen J, Voigt KD. Lymphatic absorption and metabolism of orally administered testosterone undecanoate in man. Klin Wochenschr. 1976;54(18):875–9.

    Article  CAS  PubMed  Google Scholar 

  49. Coert A, Geelen J, de Visser J, van der Vies J. The pharmacology and metabolism of testosterone undecanoate (TU), a new orally active androgen. Acta Endocrinol (Copenh). 1975;79(4):789–800.

    CAS  Google Scholar 

  50. Cense HA, van Eijck CH, Tilanus HW. New insights in the lymphatic spread of oesophageal cancer and its implications for the extent of surgical resection. Best Pract Res Clin Gastroenterol. 2006;20(5):893–906.

    Article  CAS  PubMed  Google Scholar 

  51. Garzon-Aburbeh A, Poupaert JH, Claesen M, Dumont P, Atassi G. 1,3-dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable antineoplastic agent. J Med Chem. 1983;26(8):1200–3.

    Article  CAS  PubMed  Google Scholar 

  52. Pantaleo G, Graziosi C, Fauci AS. The role of lymphoid organs in the immunopathogenesis of HIV infection. AIDS. 1993;7 Suppl 1:S19–23.

    Article  PubMed  Google Scholar 

  53. Pantaleo G, Graziosi C, Demarest JF, Cohen OJ, Vaccarezza M, Gantt K, et al. Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol Rev. 1994;140:105–30.

    Article  CAS  PubMed  Google Scholar 

  54. Umeda M, Marusawa H, Seno H, Katsurada A, Nabeshima M, Egawa H, et al. Hepatitis B virus infection in lymphatic tissues in inactive hepatitis B carriers. J Hepatol. 2005;42(6):806–12.

    Article  CAS  PubMed  Google Scholar 

  55. Shackleford DM, Faassen WA, Houwing N, Lass H, Edwards GA, Porter CJH, et al. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J Pharmacol Exp Ther. 2003;306(3):925–33.

    Article  CAS  PubMed  Google Scholar 

  56. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991;1068(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  57. Newman MS, Colbern GT, Working PK, Engbers C, Amantea MA. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol. 1999;43(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  58. Liposome technology. Boca Raton: CRC Press; 1992

  59. Korba BA, Xie H, Wright KN, Hornbuckle WE, Gerin JL, Tennant BC, et al. Liver-targeted antiviral nucleosides: enhanced antiviral activity of phosphatidyl-dideoxyguanosine versus dideoxyguanosine in woodchuck hepatitis virus infection in vivo. Hepatology. 1996;23(5):958–63.

    CAS  PubMed  Google Scholar 

  60. Taneja D, Namdeo A, Mishra PR, Khopade AJ, Jain NK. High-entrapment liposomes for 6-mercaptopurine—a prodrug approach. Drug Dev Ind Pharm. 2000;26(12):1315–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection V. Biological disposition of liposome-entrapped lipophilic prodrug of 1-beta-D-arabinofuranosylcytosine. Chem Pharm Bull. 1988;36(10):4060–7.

    Article  CAS  PubMed  Google Scholar 

  62. Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection. IV. Antitumor activity of newly synthesized lipophilic 1-beta-D-arabinofuranosylcytosine prodrug-bearing liposomes. Chem Pharm Bull. 1988;36(9):3574–83.

    Article  CAS  PubMed  Google Scholar 

  63. Bundgaard H, Falch E, Larsen C, Mikkelson TJ. Pilocarpine prodrugs. 1. Synthesis, physicochemical properties and kinetics of lactonization of pilocarpic acid-esters. J Pharm Sci. 1986;75(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  64. Burke TG, Mishra AK, Wani MC, Wall ME. Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry. 1993;32(20):5352–64.

    Article  CAS  PubMed  Google Scholar 

  65. Bundgaard H. The double prodrug concept and its applications. Adv Drug Deliv Rev. 1989;3(1):39–65.

    Article  CAS  Google Scholar 

  66. Arouri A, Hansen AH, Rasmussen TE, Mouritsen OG. Lipases, liposomes and lipid-prodrugs. Curr Opin Colloid In. 2013;18(5):419–31.

    Article  CAS  Google Scholar 

  67. Park YS. Tumor-directed targeting of liposomes. Biosci Rep. 2002;22(2):267–81.

    Article  CAS  PubMed  Google Scholar 

  68. Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45.

    Article  CAS  PubMed  Google Scholar 

  69. Shum P, Kim JM, Thompson DH. Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev. 2001;53(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  70. Lee H, Messersmith P. Bio-inspired nanomaterials for a new generation of medicine. In: Vo-Dihn T, editor. Nanotechnology in biology and medicine: methods, devices, and applications. Boca Raton, Florida: CRC Press; 2007. p. 3–1–3–20.

    Google Scholar 

  71. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204. Epub 2008/02/12.

    Article  CAS  PubMed  Google Scholar 

  72. Sabnis N, Lacko AG. Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther Deliv. 2012;3(5):599–608.

    Article  CAS  PubMed  Google Scholar 

  73. Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem. 1994;5(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  74. Yen CF, Kalunta CI, Chen FS, Kaptein JS, Lin CK, Lad PM. Flow cytometric evaluation of LDL receptors using DiI-LDL uptake and its application to B and T lymphocytic cell lines. J Immunol Methods. 1994;177(1–2):55–67.

    Article  CAS  PubMed  Google Scholar 

  75. Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM. Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release : offi J Controll Release Soc. 2007;124(3):163–71.

    Article  CAS  Google Scholar 

  76. Koller-Lucae SK, Schott H, Schwendener RA. Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-beta-D-arabinofuranosylcytosine in Daudi lymphoma cells. Br J Cancer. 1999;80(10):1542–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Versluis AJ, Rensen PC, Rump ET, Van Berkel TJ, Bijsterbosch MK. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes. Br J Cancer. 1998;78(12):1607–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Bibby DC, Charman WN, Charman SA, Iskander MN, Porter CJH. Synthesis and evaluation of 5′ alkyl ester prodrugs of zidovudine for directed lymphatic delivery. Int J Pharm. 1996;144(1):61–70.

    Article  CAS  Google Scholar 

  79. Fernandez E, Borgstrom B. Intestinal-absorption of retinol and retinyl palmitate in the Rat—effects of tetrahydrolipstatin. Lipids. 1990;25(9):549–52.

    Article  CAS  PubMed  Google Scholar 

  80. Noguchi T, Charman WNA, Stella VJ. The effect of drug lipophilicity and lipid vehicles on the lymphatic absorption of various testosterone esters. Int J Pharm. 1985;24(2–3):173–84.

    Article  CAS  Google Scholar 

  81. Deverre JR, Loiseau P, Puisieux F, Gayral P, Letourneux Y, Couvreur P, et al. Synthesis of the orally macrofilaricidal and stable glycerolipidic prodrug of melphalan, 1,3-dipalmitoyl-2-(4′(bis(2″-chloroethyl)amino)phenylalaninoyl)glycerol. Arzneimittelforschung. 1992;42–2(9):1153–6.

    Google Scholar 

  82. Loiseau PM, Deverre JR, Elkihel L, Gayral P, Letourneux Y. Study of lymphotropic targeting and macrofilaricidal activity of a melphalan prodrug on the Molinema-dessetae model. J Chemother. 1994;6(4):230–7.

    CAS  PubMed  Google Scholar 

  83. Carter GW, Young PR, Swett LR, Paris GY. Pharmacological studies in the rat with [2-(1,3-didecanoyloxy)-propyl]2-acetyloxybenzoate (a-45474)—an aspirin pro-drug with negligible gastric irritation. Agents Actions. 1980;10(3):240–5.

    Article  CAS  PubMed  Google Scholar 

  84. Sakai A, Mori N, Shuto S, Suzuki T. Deacylation reacylation cycle—a possible absorption mechanism for the novel lymphotropic antitumor agent dipalmitoylphosphatidylfluorouridine in rats. J Pharm Sci. 1993;82(6):575–8.

    Article  CAS  PubMed  Google Scholar 

  85. Hara T, Liu F, Liu DX, Huang L. Emulsion formulations as a vector for gene delivery in vitro and in vivo. Adv Drug Deliv Rev. 1997;24(2–3):265–71.

    Article  CAS  Google Scholar 

  86. Hara T, Tan Y, Huang L. In vivo gene delivery to the liver using reconstituted chylomicron remnants as a novel nonviral vector. Proc Natl Acad Sci U S A. 1997;94(26):14547–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Rensen PC, de Vrueh RL, van Berkel TJ. Targeting hepatitis B therapy to the liver. Clinical pharmacokinetic considerations. Clin Pharmacokinet. 1996;31(2):131–55.

    Article  CAS  PubMed  Google Scholar 

  88. Shawer M, Greenspan P, OI S, Lu DR. VLDL-resembling phospholipid-submicron emulsion for cholesterol-based drug targeting. J Pharm Sci. 2002;91(6):1405–13.

    Article  CAS  PubMed  Google Scholar 

  89. Kader A, Pater A. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J Control Release : off J Controll Release Soc. 2002;80(1–3):29–44.

    Article  CAS  Google Scholar 

  90. Chu AC, Tsang SY, Lo EH, Fung KP. Low density lipoprotein as a targeted carrier for doxorubicin in nude mice bearing human hepatoma HepG2 cells. Life Sci. 2001;70(5):591–601.

    Article  CAS  PubMed  Google Scholar 

  91. Tauchi Y, Takase M, Zushida I, Chono S, Sato J, Ito K, et al. Preparation of a complex of dexamethasone palmitate-low density lipoprotein and its effect on foam cell formation of murine peritoneal macrophages. J Pharm Sci. 1999;88(7):709–14.

    Article  CAS  PubMed  Google Scholar 

  92. Li H, Zhang Z, Blessington D, Nelson DS, Zhou R, Lund-Katz S, et al. Carbocyanine labeled LDL for optical imaging of tumors. Acad Radiol. 2004;11(6):669–77.

    Article  PubMed  Google Scholar 

  93. Kim JS, Kim BI, Maruyama A, Akaike T, Kim SW. A new non-viral DNA delivery vector: the terplex system. J Control Release. 1998;53(1–3):175–82.

    Article  CAS  PubMed  Google Scholar 

  94. Kim JS, Maruyama A, Akaike T, Kim SW. In vitro gene expression on smooth muscle cells using a terplex delivery system. J Control Release. 1997;47(1):51–9.

    Article  CAS  Google Scholar 

  95. Lacko AG, Nair M, Paranjape S, Johnso S, McConathy WJ. High density lipoprotein complexes as delivery vehicles for anticancer drugs. Anticancer Res. 2002;22(4):2045–9.

    CAS  PubMed  Google Scholar 

  96. Bijsterbosch MK, Schouten D, van Berkel TJ. Synthesis of the dioleoyl derivative of iododeoxyuridine and its incorporation into reconstituted high density lipoprotein particles. Biochemistry. 1994;33(47):14073–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennica L. Zaro.

Additional information

Guest Editors: D. Robert Lu and Lawrence Yu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaro, J.L. Lipid-Based Drug Carriers for Prodrugs to Enhance Drug Delivery. AAPS J 17, 83–92 (2015). https://doi.org/10.1208/s12248-014-9670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9670-z

KEY WORDS

Navigation