Skip to main content
Log in

Effect of Excipients on the Particle Size of Precipitated Pioglitazone in the Gastrointestinal Tract: Impact on Bioequivalence

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

This study sought to understand the reasons for the bioinequivalence of a newly developed generic product of pioglitazone hydrochloride and to improve its formulation so that it is equivalent to that of the reference listed drug (RLD). In this clinical study, despite a similar in vitro dissolution profile, the new oral product exhibited a lower plasma concentration of pioglitazone compared to the RLD. The strong pH-dependency of pioglitazone solubility as a weak base indicates that pioglitazone would precipitate in the small intestine after being dissolved in the stomach. Thus, in vitro experiments were performed to investigate the effect of excipients on the particle size distribution of precipitated pioglitazone. Then, the impact of particle size on in vivo absorption was discussed. The precipitated pioglitazone from the RLD showed a peak for small particles (less than 1 μm), which was not observed in the precipitate from the new product. As an excipient, hydroxypropyl cellulose (HPC) influenced the particle size of precipitated pioglitazone, and the amount of HPC in the formulation was increased to the same level as that in the RLD. The precipitate from this improved product showed approximately the same particle size distribution as that of the RLD and successfully demonstrated bioequivalence in the clinical study. In conclusion, for drugs with low solubility, this type of analysis of the particle size distribution of precipitated drugs, in addition to the dissolution test, may help to obtain a better in vitro-in vivo correlation for oral absorption and to develop a bioequivalent product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  2. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system: new scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    Article  PubMed  Google Scholar 

  3. Lipinski CA, Lombardo F, Dominy BW, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug delivery and development setting. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  4. Guideline for Bioequivalence Studies of Generic Products. Minister of Health, Labor and Welfare, 2012 http://www.nihs.go.jp/drug/be-guide(e)/Generic/GL-E_120229_BE.pdf. Accessed 20 Mar 2014.

  5. Cascone S, De Santis F, Lamberti G, Titomanlio G. The influence of dissolution conditions on the drug ADME phenomena. Eur J Pharm Biopharm. 2011;79(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  6. Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12(3):397–406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Galia E, Nicolaides E, Horter D, Lobenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.

    Article  CAS  PubMed  Google Scholar 

  8. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  CAS  PubMed  Google Scholar 

  9. Sheng JJ, McNamara DP, Amidon GL. Toward an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers. Mol Pharm. 2009;6(1):29–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kataoka M, Masaoka Y, Yamazaki Y, Sakane T, Sezaki H, Yamashita S. In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs. Pharm Res. 2003;20:1674–80.

    Article  CAS  PubMed  Google Scholar 

  11. Kataoka M, Masaoka Y, Sakuma S, Yamashita S. Effect of food intake on the oral absorption of poorly water-soluble drugs: in vitro assessment of drug dissolution and permeation assay system. J Pharm Sci. 2006;95(9):2051–61.

    Article  CAS  PubMed  Google Scholar 

  12. Buch P, Langguth P, Kataoka M, Yamashita S. IVIVC in oral absorption for fenofibrate immediate release tablets using a dissolution/permeation system. J Pharm Sci. 2009;98(6):2001–9.

    Article  CAS  PubMed  Google Scholar 

  13. Buch P, Holm P, Thomassen JQ, Scherer D, Kataoka M, Yamashita S, et al. IVIVR in oral absorption for fenofibrate immediate release tablets using dissolution and dissolution permeation methods. Pharmazie. 2010;65(10):723–8.

    CAS  PubMed  Google Scholar 

  14. Kataoka M, Itsubata S, Masaoka Y, Sakuma S, Yamashita S. In vitro dissolution/permeation system to predict the oral absorption of poorly water-soluble drugs: effect of food and dose strength on it. Biol Pharm Bull. 2011;34(3):401–7.

    Article  CAS  PubMed  Google Scholar 

  15. Buch P, Holm P, Thomassen JQ, Scherer D, Kataoka M, Yamashita S, et al. IVIVR in oral absorption for fenofibrate immediate release tablets using dissolution and dissolution permeation methods. Pharmazie. 2011;66(1):11–6.

    CAS  PubMed  Google Scholar 

  16. Kataoka M, Yokoyama T, Masaoka Y, Sakuma S, Yamashita S. Estimation of P-glycoprotein-mediated efflux in the oral absorption of P-gp substrate drugs from simultaneous analysis of drug dissolution and permeation. Eur J Pharm Sci. 2011;44(4):544–51.

    Article  CAS  PubMed  Google Scholar 

  17. Kataoka M, Sugano K, da Costa Mathews C, Wong JW, Jones KL, Masaoka Y, et al. Application of dissolution/permeation system for evaluation of formulation effect on oral absorption of poorly water-soluble drugs in drug development. Pharm Res. 2012;29(6):1485–94.

    Article  CAS  PubMed  Google Scholar 

  18. Kataoka M, Yano K, Hamatsu Y, Masaoka Y, Sakuma S, Yamashita S. Assessment of absorption potential of poorly water-soluble drugs by using the dissolution/permeation system. Eur J Pharm Biopharm. 2013;85(3 Pt B):1317–24.

    Article  CAS  PubMed  Google Scholar 

  19. Bevernage J, Forier T, Brouwers J, Tack J, Annaert P, Augustijns P. Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol Pharm. 2011;8(2):564–70.

    Article  CAS  PubMed  Google Scholar 

  20. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  21. Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012;14(4):703–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bevernage J, Brouwers J, Brewster ME, Augustijns P. Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm. 2013;453(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  23. Application materials for Pioglitazone Tablet 30 mg Sawai; Sawai Pharmaceutical Co., Ltd.

  24. The Japanese Pharmacopeia, 16th ed.; The Society of Japanese Pharmacopeia: Tokyo, Japan, 2011. http://jpdb.nihs.go.jp/jp16e/ Accessed 20 Mar 2014.

  25. Patent application laid-open disclosure number 2002–360666; Japan Patent Office.

  26. Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  27. Bagchi P. Theory of spherical colloidal particles by nonionic polymers. J Colloid Interface Sci. 1974;47:86–99.

    Article  CAS  Google Scholar 

  28. Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, Tanayama S. Disposition of AD-4833(HCl), a new antidiabetic agent, in animals. Jpn Pharmacol Ther. 1996;24(12):83–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Sugita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugita, M., Kataoka, M., Sugihara, M. et al. Effect of Excipients on the Particle Size of Precipitated Pioglitazone in the Gastrointestinal Tract: Impact on Bioequivalence. AAPS J 16, 1119–1127 (2014). https://doi.org/10.1208/s12248-014-9646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9646-z

KEY WORDS

Navigation