Advertisement

The AAPS Journal

, Volume 16, Issue 4, pp 698–704 | Cite as

Nanomedicine Drug Development: A Scientific Symposium Entitled “Charting a Roadmap to Commercialization”

  • Gregory Finch
  • Henry Havel
  • Mostafa Analoui
  • Randall W. Barton
  • Anil R. Diwan
  • Meliessa Hennessy
  • Vijayapal Reddy
  • Nakissa Sadrieh
  • Lawrence Tamarkin
  • Marc Wolfgang
  • Benjamin Yerxa
  • Banu Zolnik
  • Man Liu
Meeting Report Theme: Nanotechnology in Drug Development

Abstract

The use of nanotechnology in medicine holds great promise for revolutionizing a variety of therapies. The past decade witnessed dramatic advancements in scientific research in nanomedicines, although significant challenges still exist in nanomedicine design, characterization, development, and manufacturing. In March 2013, a two-day symposium “Nanomedicines: Charting a Roadmap to Commercialization,” sponsored and organized by the Nanomedicines Alliance, was held to facilitate better understanding of the current science and investigative approaches and to identify and discuss challenges and knowledge gaps in nanomedicine development programs. The symposium provided a forum for constructive dialogue among key stakeholders in five distinct areas: nanomedicine design, preclinical pharmacology, toxicology, CMC (chemistry, manufacturing, and control), and clinical development. In this meeting synopsis, we highlight key points from plenary presentations and focus on discussions and recommendations from breakout sessions of the symposium.

Keywords

Active Target Clinical Trial Design Mononuclear Phagocyte System Breakout Session Preclinical Pharmacology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the symposium presenters for sharing their data, case studies, and insights and the secretariat of the Nanomedicines Alliance for their excellent skills in organizing the symposium, for serving as scribes for breakout discussions, and for assistance in the preparation of this manuscript. The Nanomedicines Alliance Board of Directors critically reviewed this manuscript.

References

  1. 1.
    Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 2008;59:251–65.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Heidel JD, Davis ME. Clinical developments in nanotechnology for cancer therapy. Pharm Res. 2011;28:187–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Vlashi E, Kelderhouse LE, Sturgis JE, Low PS. Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors. ACS Nano. 2013;7(10):8573–82. doi: 10.1021/nn402644g.PubMedCrossRefGoogle Scholar
  5. 5.
    Chickering 3rd DE, Harris WP, Mathiowitz E. A microtensiometer for the analysis of bioadhesive microspheres. Biomed Instrum Technol. 1995;29(6):501–12.PubMedGoogle Scholar
  6. 6.
    Mathiowitz E, Jacob J, Jong Y, Carino G, Chickering D, Chaturvedi P, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature. 1997;386:410–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra79. doi: 10.1126/scitranslmed.3003453.PubMedCrossRefGoogle Scholar
  8. 8.
    Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7. doi: 10.1158/0008-5472.CAN-12-4561.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bendele A, Seely J, Richey C, Sennello G, Shopp G. Renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42(2):152–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma zenograft. Nanomedicine. 2013;9(5):686–93.PubMedGoogle Scholar
  12. 12.
    Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest. 2013;123(7):3061–73.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12(10):5304–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Caron WP, Morgan KP, Zamboni BA, et al. A review of study designs and outcomes of phase I clinical studies of nanoparticle agents compared with small-molecule anticancer agents. Clin Cancer Res. 2013;19(12):3309–15. doi: 10.1158/1078-0432.CCR-12-3649.PubMedCrossRefGoogle Scholar
  15. 15.
    Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, et al. Common pitfalls in nanotechnology: lessons learned from NCI’s nanotechnology characterization laboratory. Integr Biol (Camb). 2013;5(1):66–73. doi: 10.1039/c2ib20117h.CrossRefGoogle Scholar
  16. 16.
    Dobrovolskaia MA, McNeil S. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release. 2013;172(2):456–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Casinghino S, Gauthier L, McClintok D, Boldenow E, Nauman C, Freeman G, et al. In vitro methods to predict immune-mediated toxicities of dextran-based nanomaterial precursors in rats. Toxicologist. 2009;108(1):178.Google Scholar
  18. 18.
    Kummar S, Kinders R, Gutierrez ME, et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol. 2009;27:2705–11.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Stathopoulos GP, Antoniou D, Dimitroulis J, Michalopoulou P, Bastas A, Marosis K, et al. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol. 2010;21:2227–32.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Harada M, Bobe I, Saito H, Shibata N, Tanaka R, Hayashi T, et al. Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, NC-6300. Cancer Sci. 2011;102(1):192–9.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Gregory Finch
    • 1
  • Henry Havel
    • 2
  • Mostafa Analoui
    • 3
  • Randall W. Barton
    • 4
  • Anil R. Diwan
    • 4
  • Meliessa Hennessy
    • 5
  • Vijayapal Reddy
    • 2
  • Nakissa Sadrieh
    • 6
  • Lawrence Tamarkin
    • 7
  • Marc Wolfgang
    • 5
  • Benjamin Yerxa
    • 8
  • Banu Zolnik
    • 6
  • Man Liu
    • 9
  1. 1.Pfizer, Inc.GrotonUSA
  2. 2.Eli Lilly & Co.IndianapolisUSA
  3. 3.Livingston SecuritiesNew YorkUSA
  4. 4.NanoViricidesWest HavenUSA
  5. 5.Cerulean Pharma, Inc.CambridgeUSA
  6. 6.Food and Drug AdministrationSilver SpringUSA
  7. 7.CytImmune Sciences, Inc.RockvilleUSA
  8. 8.Liquidia Technologies, Inc.MorrisvilleUSA
  9. 9.Drinker Biddle & Reath, LLPWashingtonUSA

Personalised recommendations