Skip to main content
Log in

In Vitro Lipolysis Data Does Not Adequately Predict the In Vivo Performance of Lipid-Based Drug Delivery Systems Containing Fenofibrate

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The present study investigated the utility of in vitro lipolysis performance indicators drug solubilization and maximum supersaturation ratio (SRM) for their predictive use for the in vivo performance in a minipig model. The commercial Lipanthyl formulation and a series of LbDDS based on identical self-nanoemulsifying drug delivery systems (SNEDDS) containing 200 mg of fenofibrate, either dissolved or suspended, were subjected to combined gastric (pH 2) and intestinal (pH 6.5) in vitro lipolysis. Based on the solubilization profiles and SRM the rank-order SNEDDS (75% drug load) > super-SNEDDS (150% drug load, dissolved) = SNEDDS suspension (150% drug load, partially suspended) > Lipanthyl was established, with an increased likelihood of drug precipitation above SRM > 3. The in vitro performance, however, was not reproduced in vivo in a minipig model as the mean plasma concentration over time curves of all LbDDS were comparable, independent of the initial physical state of the drug. There was no correlation between the area under the solubilization-time curves (AUC in vitro ) of the intestinal step and the AUC in vivo . The study suggests careful interpretation of in vitro performance criteria and revision of LbDDS optimization towards increased solubilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Williams III RO, Watts AB, Miller DA, editors. Formulating poorly water soluble drugs. New York: Springer; 2012.

    Google Scholar 

  2. Stegemann S, Leveiller F, Franchi D, de Jong H, Linden H. When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci. 2007;31(5):249–61.

    Article  CAS  PubMed  Google Scholar 

  3. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  Google Scholar 

  4. Li P, Zhao L. Developing early formulations: practice and perspective. Int J Pharm. 2007;341(1–2):1–19.

    Article  CAS  PubMed  Google Scholar 

  5. Hauss DH, editor. Oral lipid-based formulations: enhancing the bioavailability of poorly water-soluble drugs. New York: Informa Healthcare; 2007.

    Google Scholar 

  6. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems. Eur J Pharm Sci. 2000;11(Supplement 2):S93–8.

    Article  CAS  PubMed  Google Scholar 

  7. Anton N, Vandamme T. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res. 2011;28(5):978–85.

    Article  CAS  PubMed  Google Scholar 

  8. Porter CJH, Pouton CW, Cuine JF, Charman WN. Enhancing intenstinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–91.

    Article  CAS  PubMed  Google Scholar 

  9. Cuiné JF, Charman WN, Pouton CW, Edwards GA, Porter CJH. Increasing the proportional content of surfactant (Cremophor® EL) relative to lipid in self-emulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm Res. 2004;24(4):748–57.

    Article  Google Scholar 

  10. Mohsin K, Long MA, Pouton CW. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of drug after dispersion of formulations in aqueous solution. J Pharm Sci. 2009;98(10):1–14.

    Article  Google Scholar 

  11. Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, et al. Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm. 2012;9(7):2063–79.

    Article  CAS  PubMed  Google Scholar 

  12. Larsen AT, Ohlsson AG, Polentarutti B, Barker RA, Phillips AR, Abu-Rmaileh R, et al. Oral bioavailability of cinnarizine in dogs: relation to SNEDDS droplet size, drug solubility and in vitro precipitation. Eur J Pharm Sci. 2013;48(1–2):339–50.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas N, Holm R, Garmer M, Karlsson JJ, Müllertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs. AAPS J. 2013;15(1):219–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Thomas N, Holm R, Müllertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  15. Sassene PJ, Knopp MM, Hesselkilde JZ, Koradia V, Larsen A, Rades T, et al. Precipitation of a poorly soluble model drug during in vitro lipolysis: characterization and dissolution of the precipitate. J Pharm Sci. 2010;99(12):4982–91.

    Article  CAS  PubMed  Google Scholar 

  16. Williams H, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of Type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013 2013/05/10:1–18.

    Google Scholar 

  17. Williams HD, Anby MU, Sassene P, Kleberg K, Bakala-N’Goma J-C, Calderone M, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of Type I, II, IIIA, IIIB, and IV formulations during in vitro digestion. Mol Pharm. 2012;9(11):3286–300.

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez S, Chevrier S, Ritter N, Mahler B, Demarne F, Carrière F, et al. In vitro gastrointestinal lipolysis of four formulations of piroxicam and cinnarizine with the self emulsifying excipients Labrasol® and Gelucire® 44/14. Pharm Res. 2009;26(8):1901–10.

    Article  CAS  PubMed  Google Scholar 

  19. Fernandez S, Jannin V, Chevrier S, Chavant Y, Demarne F, Carrière F. In vitro digestion of the self-emulsifying lipid excipient Labrasol® by gastrointestinal lipases and influence of its colloidal structure on lipolysis rate. Pharm Res. 2013;30(12):3077–87.

    Article  CAS  PubMed  Google Scholar 

  20. Christophersen PC, Christiansen ML, Holm R, Kristensen J, Jacobsen J, Abrahamsson B, et al. Fed and fasted state gastro-intestinal in vitro lipolysis: in vitro in vivo relations of a conventional tablet, a SNEDDS and a solidified SNEDDS. Eur J Pharm Sci. 2013;in press.

  21. Ren S, Ogbonna A, Koradia V, Sassene P, Rades T, Müllertz A. Redissolution and polymorph characterization of a poorly water-soluble drug precipitated during in vitro lipolysis from a lipid-based formulation. New Orleans, LA, USA: American Association of Pharmaceutical Sciencits (AAPS) Annual Meeting; 2010.

    Google Scholar 

  22. Mercuri A, Passalacqua A, Wickham MJ, Faulks R, Craig DM, Barker S. The effect of composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-emulsifying drug delivery systems: a microscopic and dynamic gastric model study. Pharm Res. 2011;28(7):1540–51.

    Article  CAS  PubMed  Google Scholar 

  23. Zangenberg NH, Müllertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model: I. Controlling the rate of lipolysis by continuous addition of calcium. Eur J Pharm Sci. 2001;14(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas N, Holm R, Rades T, Müllertz A. Characterising lipid lipolysis and its implication in lipid-based formulation development. AAPS J. 2012;14(4):860–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kleberg K, Jacobsen F, Fatouros DG, Müllertz A. Biorelevant media simulating fed state intestinal fluids: colloid phase characterization and impact on solubilization capacity. J Pharm Sci. 2010;99(8):3522–32.

    Article  CAS  PubMed  Google Scholar 

  26. Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T, et al. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev. 2007;59(6):419–26.

    Article  CAS  PubMed  Google Scholar 

  27. Sassene P, Michelsen J, Ren S, Koradia V, Larsen A, Rades T, et al. Characterization of precipitates formed during in vitro lipolysis of SMEDDS containing 3 poorly soluble model drugs. Innovation in Drug Delivery: From Preformulation to Development through Innovative Evaluation Process; 3.-6. October, Aix-en Provence, France2010.

  28. Williams HD, Sassene P, Kleberg K, Bakala-N'Goma J-C, Calderone M, Jannin V, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  CAS  PubMed  Google Scholar 

  29. Larsen A, Holm R, Pedersen M, Müllertz A. Lipid-based formulations for danazol containing a digestible surfactant, Labrafil® M2125CS: in vivo bioavailability and dynamic in vitro lipolysis. Pharm Res. 2008;25(12):2769–77.

    Article  CAS  PubMed  Google Scholar 

  30. Larsen A, Åkesson P, Juréus A, Saaby L, Abu-Rmaileh R, Abrahamsson B, et al. Bioavailability of cinnarizine in dogs: Effect of SNEDDS loading level and correlation with cinnarizine solubilization during in vitro lipolysis. Pharm Res. 2013 2013/08/15;in press:1–13.

    Google Scholar 

  31. Carriere F, Barrowman JA, Verger R, Laugier R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 1993;105(3):876–88.

    CAS  PubMed  Google Scholar 

  32. Thomas N, Müllertz A, Graf A, Rades T. Influence of lipid composition and drug load on the in vitro performance of self-nanoemulsifying drug delivery systems. J Pharm Sci. 2012;101(5):1721–31.

    Article  CAS  PubMed  Google Scholar 

  33. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, et al. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62(3):196–220.

    Article  CAS  PubMed  Google Scholar 

  34. Hossain M, Abramowitz W, Watrous BJ, Szpunar GJ, Ayres JW. Gastrointestinal transit of nondisintegrating, nonerodible oral dosage forms in pigs. Pharm Res. 1990;7(11):1163–6.

    Article  CAS  PubMed  Google Scholar 

  35. Thi TD, Van Speybroeck M, Mols R, Annaert P, Martens J, Van Humbeeck J, et al. The conflict between in vitro release studies in human biorelevant media and the in vivo exposure in rats of the lipophilic compound fenofibrate. Int J Pharm. 2011;414(1–2):118–24.

    Google Scholar 

  36. Weil A, Caldwell J, Strolin-Benedetti M. The metabolism and disposition of fenofibrate in rat, guinea pig, and dog. Drug Metab Dispos. 1988;16(2):302–9.

    CAS  PubMed  Google Scholar 

  37. Davis SS, Illum L, Hinchcliffe M. Gastrointestinal transit of dosage forms in the pig. J Pharm Pharmacol. 2001;53(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  38. Fei Y, Kostewicz ES, Sheu M-T, Dressman JB. Analysis of the enhanced oral bioavailability of fenofibrate lipid formulations in fasted humans using an in vitro–in silico–in vivo approach. Eur J Pharm Biopharm. 2013;85(3):1274–84.

    Article  CAS  PubMed  Google Scholar 

  39. He H, Yang R, Tang X. In vitro and in vivo evaluation of fenofibrate solid dispersion prepared by hot-melt extrusion. Drug Dev Ind Pharm. 2010;36(6):681–7.

    Article  CAS  PubMed  Google Scholar 

  40. Linn M, Collnot E-M, Djuric D, Hempel K, Fabian E, Kolter K, et al. Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur J Pharm Sci. 2012;45(3):336–43.

    Article  CAS  PubMed  Google Scholar 

  41. Porter CJH, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res. 2004;21(8):1405–12.

    Article  CAS  PubMed  Google Scholar 

  42. Cuiné JF, Claire L, McEvoy CL, Charman WN, Pouton CW, Edwards GA, et al. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J Pharm Sci. 2008;97(2):995–1012.

    Article  PubMed  Google Scholar 

  43. Larsen AT, Sassene P, Müllertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm. 2011;417(1–2):245–55.

    Article  CAS  PubMed  Google Scholar 

  44. Griffin B, Kuentz M, Vertzoni M, Kostewicz E, Fei Y, Faisal W, et al. Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipid-based formulations: case studies with fenofibrate. Eur J Pharm Biopharm. 2013. doi:10.1016/j.ejpb.2013.10.016.

    PubMed Central  Google Scholar 

  45. Araújo F, Sarmento B. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int J Pharm. 2013;458(1):128–34.

    Article  PubMed  Google Scholar 

  46. Antunes F, Andrade F, Ferreira D, Nielsen HM, Sarmento B. Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab. 2013;14(1):4–20.

    Article  CAS  PubMed  Google Scholar 

  47. Fischer SM, Flaten GE, Hagesæther E, Fricker G, Brandl M. In-vitro permeability of poorly water soluble drugs in the phospholipid vesicle-based permeation assay: the influence of nonionic surfactants. J Pharm Pharmacol. 2011;63(8):1022–30.

    Article  CAS  PubMed  Google Scholar 

  48. Boyd BJ. Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm. 2003;260(2):239–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the personnel at the Lundbeck animal facilities for their skillful handling of the animals and support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Müllertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, N., Richter, K., Pedersen, T.B. et al. In Vitro Lipolysis Data Does Not Adequately Predict the In Vivo Performance of Lipid-Based Drug Delivery Systems Containing Fenofibrate. AAPS J 16, 539–549 (2014). https://doi.org/10.1208/s12248-014-9589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9589-4

KEY WORDS

Navigation