Skip to main content
Log in

A Mathematical Model of the Effect of Immunogenicity on Therapeutic Protein Pharmacokinetics

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

A mathematical pharmacokinetic/anti-drug-antibody (PK/ADA) model was constructed for quantitatively assessing immunogenicity for therapeutic proteins. The model is inspired by traditional pharmacokinetic/pharmacodynamic (PK/PD) models, and is based on the observed impact of ADA on protein drug clearance. The hypothesis for this work is that altered drug PK contains information about the extent and timing of ADA generation. By fitting drug PK profiles while accounting for ADA-mediated drug clearance, the model provides an approach to characterize ADA generation during the study, including the maximum ADA response, sensitivity of ADA response to drug dose level, affinity maturation rate, time lag to observe an ADA response, and the elimination rate for ADA–drug complex. The model also provides a mean to estimate putative concentration–time profiles for ADA, ADA–drug complex, and ADA binding affinity-time profile. When simulating ADA responses to various drug dose levels, bell-shaped dose–response curves were generated. The model contains simultaneous quantitative modeling and provides estimation of the characteristics of therapeutic protein drug PK and ADA responses in vivo. With further experimental validation, the model may be applied to the simulation of ADA response to therapeutic protein drugs in silico, or be applied in subsequent PK/PD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and Efficacy. AAPS Journal. 2012;14(2):296–302. doi:10.1208/s12248-012-9340-y.

    Article  PubMed  CAS  Google Scholar 

  2. Barbosa MD. Immunogenicity of biotherapeutics in the context of developing biosimilars and biobetters. Drug Discov Today. 2011;16(7–8):345–53.

    Article  PubMed  CAS  Google Scholar 

  3. Schellekens H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant. 2005;20 Suppl 6:vi3–9.

    Article  PubMed  CAS  Google Scholar 

  4. Shankar G, Shores E, Wagner C, Mire-Sluis A. Scientific and regulatory considerations on the immunogenicity of biologics. Trends Biotechnol. 2006;24(6):274–80.

    Article  PubMed  CAS  Google Scholar 

  5. Pendley C, Schantz A, Wagner C. Immunogenicity of therapeutic monoclonal antibodies. Curr Opin Mol Ther. 2003;5(2):172–9.

    PubMed  CAS  Google Scholar 

  6. US Department of Health and Human Services Food and Drug Administration. Guidance for industry assay development for immunogenicity testing of therapeutic proteins. 2009.

  7. US Department of Health and Human Services Food and Drug Administration. Guidance for industry premarketing risk assessment. 2004.

  8. US Department of Health and Human Services Food and Drug Administration. Guidance for industry immunotoxicology evaluation of investigational new drugs. 2002.

  9. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  PubMed  CAS  Google Scholar 

  10. Ponce R, Abad L, Amaravadi L, Gelzleichter T, Gore E, Green J, et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol. 2009;54(2):164–82.

    Article  PubMed  CAS  Google Scholar 

  11. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346(7):469–75.

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood. 2001;98(12):3241–8.

    Article  PubMed  CAS  Google Scholar 

  13. Gupta S, Indelicato SR, Jethwa V, Kawabata T, Kelley M, Mire-Sluis AR, et al. Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics. J Immunol Methods. 2007;321(1–2):1–18.

    Article  PubMed  CAS  Google Scholar 

  14. Mire-Sluis AR, Barrett YC, Devanarayan V, Koren E, Liu H, Maia M, et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods. 2004;289(1–2):1–16.

    Article  PubMed  CAS  Google Scholar 

  15. Shankar G, Pendley C, Stein KE. A risk-based bioanalytical strategy for the assessment of antibody immune responses against biological drugs. Nat Biotechnol. 2007;25(5):555–61.

    Article  PubMed  CAS  Google Scholar 

  16. Neuberger MS, Ehrenstein MR, Rada C, Sale J, Batista FD, Williams G, et al. Memory in the B-cell compartment: antibody affinity maturation. Philos Trans R Soc Lond B Biol Sci. 2000;355(1395):357–60.

    Article  PubMed  CAS  Google Scholar 

  17. Bell GI. Mathematical model of clonal selection and antibody production. J Theor Biol. 1970;29(2):191–232.

    Article  PubMed  CAS  Google Scholar 

  18. Lee HY, Topham DJ, Park SY, Hollenbaugh J, Treanor J, Mosmann TR, et al. Simulation and prediction of the adaptive immune response to influenza A virus infection. J Virol. 2009;83(14):7151–65.

    Article  PubMed  CAS  Google Scholar 

  19. Xu ZH, Lee H, Vu T, Hu C, Yan H, Baker D, et al. Population pharmacokinetics of golimumab in patients with ankylosing spondylitis: impact of body weight and immunogenicity. Int J Clin Pharmacol Ther. 2010;48(9):596–607.

    Article  PubMed  CAS  Google Scholar 

  20. Bonate PL, Sung C, Welch K, Richards S. Conditional modeling of antibody titers using a zero-inflated poisson random effects model: application to Fabrazyme. J Pharmacokinet Pharmacodyn. 2009;36(5):443–59. Epub 2009/10/01.

    Article  PubMed  CAS  Google Scholar 

  21. Perez Ruixo JJ, Ma P, Chow AT. The utility of modeling and simulation approaches to evaluate immunogenicity effect on the therapeutic protein pharmacokinetics. AAPS Journal. 2012;15(1):172–82. doi:10.1208/s12248-012-9424-8.

    Article  PubMed  Google Scholar 

  22. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  PubMed  CAS  Google Scholar 

  23. Wang YM, Krzyzanski W, Doshi S, Xiao JJ, Perez-Ruixo JJ, Chow AT. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J. 2010;12(4):729–40. Epub 2010/10/22.

    Article  PubMed  CAS  Google Scholar 

  24. Krzyzanski W. Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models. J Pharmacokinet Pharmacodyn. 2011;38(2):179–204.

    Article  PubMed  Google Scholar 

  25. Tarlinton DM, Smith KG. Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre. Immunol Today. 2000;21(9):436–41.

    Article  PubMed  CAS  Google Scholar 

  26. Fan H, Conner RF, Villarreal LP. Aids: science and society. 6th ed. Boston: Jones and Bartlett; 2011. 30 pages.

    Google Scholar 

  27. Chiras DD. Human biology. 7th ed. Boston: Jones and Bartlett; 2011.

    Google Scholar 

  28. Foote J, Milstein C. Kinetic maturation of an immune response. Nature. 1991;352(6335):530–2.

    Article  PubMed  CAS  Google Scholar 

  29. Davie JM, Paul WE. Receptors on immunocompetent cells. V. Cellular correlates of the “maturation” of the immune response. J Exp Med. 1972;135(3):660–74.

    Article  PubMed  CAS  Google Scholar 

  30. Steiner LA, Eisen HN. Sequential changes in the relative affinity of antibodies synthesized during the immune response. J Exp Med. 1967;126(6):1161–83.

    Article  PubMed  CAS  Google Scholar 

  31. Challacombe SJ, Russell MW. Estimation of the intravascular half-lives of normal rhesus monkey IgG, IgA, and IgM. Immunology. 1979;36(2):331–8.

    PubMed  CAS  Google Scholar 

  32. Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A. 1995;92(5):1254–6.

    Article  PubMed  CAS  Google Scholar 

  33. Batista FD, Neuberger MS. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity. 1998;8(6):751–9.

    Article  PubMed  CAS  Google Scholar 

  34. Eisen HN, Siskind GW. Variations in affinities of antibodies during the immune response. Biochemistry. 1964;3:996–1008.

    Article  PubMed  CAS  Google Scholar 

  35. Reth M, Hammerling GJ, Rajewsky K. Analysis of the repertoire of anti-NP antibodies in C57BL/6 mice by cell fusion. I. Characterization of antibody families in the primary and hyperimmune response. Eur J Immunol. 1978;8(6):393–400.

    Article  PubMed  CAS  Google Scholar 

  36. Gearhart PJ, Johnson ND, Douglas R, Hood L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature. 1981;291(5810):29–34.

    Article  PubMed  CAS  Google Scholar 

  37. Flores MV, Hickling TP, Sreckovic S, Fidock MD, Horscroft N, Katragadda M, et al. Preclinical studies of PF-04849285, an interferon-alpha8 fusion protein for the treatment of HCV. Antivir Ther. 2012;17(5):869–81.

    Article  PubMed  CAS  Google Scholar 

  38. Zager MG, Barton HA. A multiscale, mechanism-driven, dynamic model for the effects of 5 alpha-reductase inhibition on prostate maintenance. PLoS One. 2012;7(9):e44359.

    Article  PubMed  CAS  Google Scholar 

  39. Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS biology. 2003;1(1):E10.

    Article  PubMed  Google Scholar 

  40. Pier G, Lyczak JB. Immunology, infection, and immunity. Washington: ASM Press; 2004. p. 196–7.

    Google Scholar 

  41. Pathak S, Palan U. Immunology: essential and fundamental. New Delhi: Capital Publishing Company; 2005. p. 82.

    Google Scholar 

  42. Basir S. Textbook of immunology. New Delhi: Prentice Hall of India; 2010. p. 45.

    Google Scholar 

  43. Flower DR. Immunoinformatics and the in silico prediction of immunogenicity. An introduction. Methods Mol Biol. 2007;409:1–15.

    Article  PubMed  CAS  Google Scholar 

  44. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 2010;24(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  45. Devey ME, Bleasdale-Barr KM, Bird P, Amlot PL. Antibodies of different human IgG subclasses show distinct patterns of affinity maturation after immunization with keyhole limpet haemocyanin. Immunology. 1990;70(2):168–74.

    PubMed  CAS  Google Scholar 

  46. Poulsen TR, Jensen A, Haurum JS, Andersen PS. Limits for antibody affinity maturation and repertoire diversification in hypervaccinated humans. J Immunol. 2011;187(8):4229–35.

    Article  PubMed  CAS  Google Scholar 

  47. Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol. 2001;2(9):816–22. Epub 2001/08/30.

    Article  PubMed  CAS  Google Scholar 

  48. Gorovits B. Antidrug antibody assay validation: industry survey results. AAPS J. 2009;11(1):133–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers, Scott Fountain, Kenneth Luu, Mary Spilker, and Michael Zager for their valuable suggestions. We thank the PDM department colleagues and especially the immunogenicity strategy group (Li Xue, Bonita Rup, Pratap Singh, John Harrold, Denise O'Hara, Boris Gorovits, Jim McNally, Mengmeng Wang, Anup Zutshi, Ryan Nolan, Michel Awwad, and Anson Abraham) for their help and suggestions.

Conflict of Interest

All authors are employed by Pfizer Inc. This work was partially presented as a poster presentation at the 2012 AAPS National Biotechnology Conference, May 21–22 in San Diego, CA, USA. P. V. receives royalties from the University of Washington Center for Commercialization, the licensor of the SAAM II software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vicini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Hickling, T., Kraynov, E. et al. A Mathematical Model of the Effect of Immunogenicity on Therapeutic Protein Pharmacokinetics. AAPS J 15, 1141–1154 (2013). https://doi.org/10.1208/s12248-013-9517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9517-z

Keywords

Navigation