Skip to main content

A Report from the Pediatric Formulations Task Force: Perspectives on the State of Child-Friendly Oral Dosage Forms

Abstract

Despite the fact that a significant percentage of the population is unable to swallow tablets and capsules, these dosage forms continue to be the default standard. These oral formulations fail many patients, especially children, because of large tablet or capsule size, poor palatability, and lack of correct dosage strength. The clinical result is often lack of adherence and therapeutic failure. The American Association of Pharmaceutical Scientists formed a Pediatric Formulations Task Force, consisting of members with various areas of expertise including pediatrics, formulation development, clinical pharmacology, and regulatory science, in order to identify pediatric, manufacturing, and regulatory issues and areas of needed research and regulatory guidance. Dosage form and palatability standards for all pediatric ages, relative bioavailability requirements, and small batch manufacturing capabilities and creation of a viable economic model were identified as particular needs. This assessment is considered an important first step for a task force seeking creative approaches to providing more appropriate oral formulations for children.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Thompson KC. Extemporaneous formulations: Comparison with labeled pediatric formulations. American Pharmaceutical Review 2010 (March); 13(2).

  2. Baguley D, Lim E, Bevan A, et al. Prescribing for children-taste and palatability affect adherence to antibiotics: a review. Arch Dis Child. 2012;97(3):293–7.

    PubMed  Article  Google Scholar 

  3. Hendeles L. Selecting a systemic corticosteroid for acute asthma in children. J Peds. 2003;142:S40–4.

    Article  CAS  Google Scholar 

  4. Steele RW, Russo TM, Thomas MP. Adherence issues related to the selection of antistaphylococcal or antifungal antibiotic suspensions for children. Clin Pediatr. 2006;45(3):245–50.

    Article  Google Scholar 

  5. EMEA Reflection Paper. Reflection paper formulations of choice for the paediatric population, 28 Jul 2006 EMEA/CHMP/PEG?194810/2005. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003782.pdf. Accessed 19 Jul 2013.

  6. EMA Guideline on Pharmaceutical Development of Medicines for Paediatric Use. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/06/WC500107908.pdf. Accessed 19 Jul 2013.

  7. Spomer N, Klingmann V, Stoltenberg I, et al. Acceptance of uncoated mini-tablets in young children: results from a prospective exploratory cross-over study. Arch Dis Child. 2012;97(3):283–6.

    PubMed  Article  Google Scholar 

  8. Shah R, Collier J, Saveed V, Bryandt A, Habib M, Khan MA. Tablet splitting of a narrow therapeutic index drug: a case study with levothyroxine sodium. AAPS Pharm Sci Technol. 2010;11(2):818–25.

    Article  Google Scholar 

  9. Zhao N, Zidan A, Tawakkul M, Sayeed V, Khan MA. Tablet splitting: product quality assessment of metropolol succinate extended release tablets. Int J Pharm. 2010;401:25–31.

    PubMed  Article  CAS  Google Scholar 

  10. FDA Guidance to Industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a Biopharmaceutics Classification System, 2000. http://www.fda.gov/downloads/Drugs/…/Guidances/ucm070246.pdf. Accessed 19 July 2013.

  11. Abdel-Rahman S, Amidon GL, Kaul A, et al. Summary of the National Institute of Child Health and Human Development-Best Pharmaceuticals for Children Act Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System Working Group. Clin Ther. 2012;34(11):S11–24.

    PubMed  Article  Google Scholar 

  12. Cella M, Gorter de Vries F, Burger D, Danhof M, Della Pasqua O. A model-based approach to dose selection in early pediatric development. Clin Pharmacol Ther. 2010;87(3):294–302.

    PubMed  Article  CAS  Google Scholar 

  13. Knibbe CA, Danhof M. Individualized dosing regimens in children based on population PKPD modeling: are we ready for it? Int J Pharm. 2011;415(1–2):9–14.

    PubMed  Article  CAS  Google Scholar 

  14. Cella M, Danhof M, Della Pasqua O. Adaptive trials in pediatric development: dealing with heterogeneity and uncertainty in pharmacokinetic differences in children. Br J Clin Pharmacol. 2012;74(2):346–53.

    PubMed  Article  CAS  Google Scholar 

  15. De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–17.

    PubMed  Article  Google Scholar 

  16. Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm Res. 2003;20(12):1917–25.

    PubMed  Article  CAS  Google Scholar 

  17. Charkoftaki G, Dokoumetzidis A, Valsami G, Macheras P. Elucidating the role of dose in the biopharmaceutics classification of drugs: the concepts of critical dose, effective in vivo solubility, and dose-dependent BCS. Pharm Res. 2012;29(11):3188–98.

    PubMed  Article  CAS  Google Scholar 

  18. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    PubMed  Article  CAS  Google Scholar 

  19. Amidon G. Best Pharmaceuticals for Children Act Pediatric Formulations Initiative Workshop, Potomac, 2011, http://bpca.nichd.nih.gov/collaborativeefforts/upload/PFI_Workshop_11-1-2-11.pdf. Accessed 19 Jul 2013.

  20. Shehab N, Lewis CL, Streetman DD, Donn SM. Exposure to the pharmaceutical excipient benzyl alcohol and propylene glycol among critically ill neonates. Pediatr Crit Care Med. 2009;10(2):256–9.

    PubMed  Article  Google Scholar 

  21. Strickley RG, Iwata Q, Will S, Dahl TC. Pediatric drugs—a review of commercially available oral formulations. J Pharm Sci. 2008;97(5):1731–74.

    PubMed  Article  CAS  Google Scholar 

  22. Inactive Ingredients Database URL: http://www.fda.gov/Drugs/InformationOnDrugs/ucm113978.htm. Accessed 19 Jul 2013.

  23. European Union Pediatric Formulations Initiative. http://www.eupfi.org/. Accessed 19 Jul 2013.

  24. Meilgaard M, Civille GV, Carr BT. Sensory evaluation techniques. 3rd ed. Boca Raton: CRC; 1999.

    Book  Google Scholar 

  25. Legin A, Rudnitskaya A, Clapham D, Seleznev B, Lord K, Vlasov Y. Electronic tongue for pharmaceutical analytics: quantification of tastes and masking effects. Anal Bioanal Chem. 2004;380(1):36–45. Epub 2004 Jul 29.

    PubMed  Article  CAS  Google Scholar 

  26. Lorenz JK, Reo JP, Hendl O, Worthington JH, Petrossian VD. Evaluation of a taste sensor instrument (electronic tongue) for use in formulation development. Int J Pharm. 2009;367(1–2):65–72.

    PubMed  Article  CAS  Google Scholar 

  27. Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Performance qualification of an electronic tongue based on ICH guideline Q2. J Pharm Biomed Anal. 2010;51(3):497–506.

    PubMed  Article  CAS  Google Scholar 

  28. Guffon N, Kibleur Y, Copalu W, Tissen C, Breitkreutz J. Developing a new formulation of sodium phenylbutyrate. Arch Dis Child. 2012;97:1081–5.

    PubMed  Article  Google Scholar 

  29. Chen ML, Straughn AB, Sadrich N, Meyer M, Faustino PJ, Ciavarella AB, et al. A modern view of excipient effects on bioequivalence: case study of sorbitol. Pharm Res. 2007;24(1):73–80.

    PubMed  Article  Google Scholar 

  30. Richey RH, Craig JV, Shah UU, Ford JL, Barker CE, Peak M, et al. The manipulation of drugs to obtain the required dose: systematic review. J Adv Nurs. 2012;68(9):2103–12.

    PubMed  Article  Google Scholar 

  31. Stegemann S, Gosch M, Breitkreutz J. Swallowing dysfunction and dysphagia is an unrecognized challenge for oral drug therapy. Int J Pharm. 2012;430:197–206.

    PubMed  Article  CAS  Google Scholar 

  32. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Exp Opin Drug Deliv. 2011;8:299–316.

    Article  CAS  Google Scholar 

  33. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)—a novel solid dosage form for pediatric use. Eur J Pharm Biopharm. 2011;78:462–9.

    PubMed  Article  CAS  Google Scholar 

  34. Walsh J, Bickmann D, Breitkreutz J, Chariot-Goulet M. Delivery devices for the administration of pediatric formulations: overview of current practice, challenges and recent developments. Int J Pharm. 2011;415:221–31.

    PubMed  Article  CAS  Google Scholar 

  35. Aziz MAHH, Jameela KA. How accurate are household spoons in drug administration? Med Princ Pract. 1990;2:106–9.

    Google Scholar 

  36. Madlon-Kay DJ, Mosch FS. Liquid medication dosing errors. J Fam Pract. 2000;49:741–4.

    PubMed  CAS  Google Scholar 

  37. Griessmann K, Breitkreutz J, Schubert-Zsilavecz M, Abdel-Tawab M. Dosing accuracy of measuring devices provided with antibiotic oral suspensions. Paediatr Perinat Drug Ther. 2007;8:61–70.

    Article  Google Scholar 

  38. Dockhorn S, Feuersenger D, Schuenemann S, Knauf B, Duerr S, Schubert-Zsilavecz M, et al. Study of microbial contamination and dosing accuracy of oral dispensers. J Clin Pharm Ther. 2010;35:279–87.

    PubMed  Article  CAS  Google Scholar 

  39. Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert Opin Drug Deliv. 2007;4:37–45.

    PubMed  Article  CAS  Google Scholar 

  40. Charkoftaki G, Kytariolos J, Macheras P. Novel milk-based oral formulations: proof of concept. Int J Pharm. 2010;390:150–9.

    PubMed  Article  CAS  Google Scholar 

  41. Rieder M. If children ruled the pharmaceutical industry: the need for pediatric formulations. Drug News Perspect. 2010;23:458–64.

    PubMed  Google Scholar 

  42. Booth, B. Pediatric formulations: what we want to know. Presentation to the FDA Pediatric Advisory Committee, 15 December 2009. www.fda.gov/downloads/AdvisoryCommittees/…/UCM197942.pdf. Accessed 19 Jul 2013.

  43. Raw AS, Lionberger R, Yu LX. Pharmaceutical equivalence by design for generic drugs: modified release products. Pharm Res. 2011;28(7):1445–53.

    PubMed  Article  CAS  Google Scholar 

  44. Health Canada Guidance Document. Comparative bioavailability standards: formulations used for systemic effects. May 22, 2012. http://www.hc-sc.gc.ca/dhp-mps/prodpharma/applic-demande/guide- ld/bio/gd_standards_ld_normes-eng.php. Accessed 19 Jul 2013.

  45. Holford N. Dosing in children. Clin Pharmacol Ther. 2010;87:367–70.

    PubMed  Article  CAS  Google Scholar 

  46. Barrett JS. Physiologically-based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.

    PubMed  Article  CAS  Google Scholar 

  47. Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth. 2011;21:291–301.

    PubMed  Article  Google Scholar 

  48. Laer S, Barrett JS, Meibohm B. The in silico child: using simulation to guide pediatric drug development and manage pediatric pharmacotherapy. J Clin Pharmacol. 2009;49:889–904.

    PubMed  Article  CAS  Google Scholar 

  49. Meibohm B, Läer S, Panetta JC, Barrett JS. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J. 2005;7:E475–87.

    PubMed  Article  Google Scholar 

  50. Wang Y, Jadhav PR, Lala M, Gobburu JV. Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic studies. J Clin Pharmacol. 2012;52(10):1601–6.

    PubMed  Article  CAS  Google Scholar 

  51. Strachan I, Greener M. Medication-related swallowing difficulties may be more common than we realise. Pharm Pract. 2005;15:411–4.

    Google Scholar 

  52. Milne CP, Bruss JB. The economics of pediatric formulation development for off-patent drugs. Clin Ther. 2008;30(11):2133–45.

    PubMed  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Drs. Philip Mayer and David Mitchell and AAPS for facilitating this effort and to Sharon Pichon of AAPS for facilitating the calls and meetings with the co-authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Zajicek.

Additional information

Guest Editors: Bernd Meibohm, Jeffrey S. Barrett, and Gregory Knipp

During the 2010 Pharmaceutical Sciences World Congress in New Orleans, 19 of the 47 partnering scientific organizations met to discuss further collaborations among all pharmaceutical scientific organizations. During that meeting, several topics were selected for further collaborations. This paper is the result of one of those topics.

DISCLAIMER

Comments and views of the authors do not necessarily represent the views of the governmental agencies or the other organizations with whom they are affiliated.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zajicek, A., Fossler, M.J., Barrett, J.S. et al. A Report from the Pediatric Formulations Task Force: Perspectives on the State of Child-Friendly Oral Dosage Forms. AAPS J 15, 1072–1081 (2013). https://doi.org/10.1208/s12248-013-9511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9511-5

KEY WORDS

  • children
  • drugs
  • formulations
  • manufacturing
  • palatability
  • pediatrics
  • regulatory