Skip to main content

Non-Arrhenius Protein Aggregation

Abstract

Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Laidler KJ. Chemical Kinetics. 2nd ed. New York: McGraw-Hill; 1965.

    Google Scholar 

  2. Waterman KC, Adami RC. Accelerated aging: prediction of chemical stability of pharmaceuticals. Int J Pharm. 2005;293(1–2):101–25.

    Article  PubMed  CAS  Google Scholar 

  3. Thirumangalathu R, Krishnan S, Bondarenko P, Speed-Ricci M, Randolph TW, Carpenter JF, et al. Oxidation of methionine residues in recombinant human interleukin-1 receptor antagonist: implications of conformational stability on protein oxidation kinetics. Biochemistry. 2007;46(21):6213–24.

    Article  PubMed  CAS  Google Scholar 

  4. Pan B, Abel J, Ricci MS, Brems DN, Wang DI, Trout BL. Comparative oxidation studies of methionine residues reflect a structural effect on chemical kinetics in rhG-CSF. Biochemistry. 2006;45(51):15430–43.

    Article  PubMed  CAS  Google Scholar 

  5. Nellis DF, Michiel DF, Jiang MS, Esposito D, Davis R, Jiang H, et al. Characterization of recombinant human IL-15 deamidation and its practical elimination through substitution of asparagine 77. Pharm Res. 2011;29(3):722–38.

    Article  PubMed  Google Scholar 

  6. Crowley T. Case studies: utilizing arrhenius kinetics to predict stability of recombinant proteins. Informa Life Science’s Non-Antibody Protein Production, June 8–9, ed. Berlin, Germany; 2011.

  7. Hawe A, Poole R, Romeijn S, Kasper P, van der Heijden R, Jiskoot W. Towards heat-stable oxytocin formulations: analysis of degradation kinetics and identification of degradation products. Pharm Res. 2009;26(7):1679–88.

    Article  PubMed  CAS  Google Scholar 

  8. Weiss WF, Young TM, Roberts CJ. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci. 2009;98(4):1246–77.

    Article  PubMed  CAS  Google Scholar 

  9. Plaza del Pino IM, Ibarra-Molero B, Sanchez-Ruiz JM. Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins Struct, Funct, Bioinform. 2000;40(1):58–70.

    Article  CAS  Google Scholar 

  10. Torrent J, Marchal S, Ribo M, Vilanova M, Georges C, Dupont Y, et al. Distinct unfolding and refolding pathways of ribonuclease a revealed by heating and cooling temperature jumps. Biophys J. 2008;94(10):4056–65.

    Article  PubMed  CAS  Google Scholar 

  11. Andrews JM, Roberts CJ. Non-native aggregation of α-chymotrypsinogen occurs through nucleation and growth with competing nucleus sizes and negative activation energies. Biochemistry. 2007;46(25):7558–71.

    Article  PubMed  CAS  Google Scholar 

  12. Falconer RJ, Marangon M, Van Sluyter SC, Neilson KA, Chan C, Waters EJ. Thermal stability of thaumatin-like protein, chitinase, and invertase isolated from Sauvignon blanc and Semillon juice and their role in haze formation in wine. J Agric Food Chem. 2010;58(2):975–80.

    Article  PubMed  CAS  Google Scholar 

  13. Waegele MM, Gai F. Infrared study of the folding mechanism of a helical hairpin: porcine PYY. Biochemistry. 2010;49(35):7659–64.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshioka S, Tajima S, Aso Y, Kojima S. Inactivation and aggregation of beta-galactosidase in lyophilized formulation described by Kohlrausch–Williams–Watts stretched exponential function. Pharm Res. 2003;20(10):1655–60.

    Article  PubMed  CAS  Google Scholar 

  15. Yoshioka S, Aso Y, Izutsu K, Kojima S. Is stability prediction possible for protein drugs? Denaturation kinetics of beta-galactosidase in solution. Pharm Res. 1994;11(12):1721–5.

    Article  PubMed  CAS  Google Scholar 

  16. Weijers M, Barneveld PA, Cohen SMA, Visschers RW. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics. Protein Sci. 2003;12(12):2693–703.

    Article  PubMed  CAS  Google Scholar 

  17. Waseem A, Salahuddin A. Anomalous temperature-dependence of the specific interaction of concanavalin A with a multivalent ligand-dextran. Biochim Biophys Acta. 1983;746(1–2):65–71.

    Article  PubMed  CAS  Google Scholar 

  18. Mehrotra S, Balaram H. Methanocaldococcus jannaschii adenylosuccinate synthetase: studies on temperature dependence of catalytic activity and structural stability. Biochim Biophys Acta. 2008;1784(12):2019–28.

    Article  PubMed  CAS  Google Scholar 

  19. Matagne A, Jamin M, Chung EW, Robinson CV, Radford SE, Dobson CM. Thermal unfolding of an intermediate is associated with non-Arrhenius kinetics in the folding of hen lysozyme. J Mol Biol. 2000;297(1):193–210.

    Article  PubMed  CAS  Google Scholar 

  20. Oliveberg M, Tan Y-J, Silow M, Fersht AR. The changing nature of the protein folding transition state: implications for the shape of the free-energy profile for folding. J Mol Biol. 1998;277(4):933–43.

    Article  PubMed  CAS  Google Scholar 

  21. Yang WY, Gruebele M. Rate–temperature relationships in lambda-repressor fragment lambda 6–85 folding. Biochemistry (Mosc). 2004;43(41):13018–25.

    Article  CAS  Google Scholar 

  22. Tölgyesi F, Ullrich B, Fidy J. Tryptophan phosphorescence signals characteristic changes in protein dynamics at physiological temperatures. Biochim Biophys Acta Protein Struct Mol Enzymol. 1999;1435(1–2):1–6.

    Article  Google Scholar 

  23. Chen BL, Baase WA, Schellman JA. Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry (Mosc). 1989;28(2):691–9.

    Article  CAS  Google Scholar 

  24. Oliveberg M, Tan Y-J, Fersht AR. Negative activation enthalpies in the kinetics of protein folding. Proc Natl Acad Sci U S A. 1995;92(19):8926–9.

    Article  PubMed  CAS  Google Scholar 

  25. Levitsky V, Melik-Nubarov NS, Siksnis VA, Grinberg V, Burova TV, Levashov AV, et al. Reversible conformational transition gives rise to ‘zig–zag’ temperature dependence of the rate constant of irreversible thermoinactivation of enzymes. Eur J Biochem. 1994;219(1–2):219–30.

    Article  PubMed  CAS  Google Scholar 

  26. Brummitt RK, Nesta DP, Roberts CJ. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions. J Pharm Sci. 2013;(in press)

  27. Stefani M. Structural polymorphism of amyloid oligomers and fibrils underlies different fibrillization pathways: immunogenicity and cytotoxicity. Curr Protein Pept Sci. 2010;11(5):343–54.

    Article  PubMed  CAS  Google Scholar 

  28. Ferrone F. Analysis of protein aggregation kinetics. Methods Enzymol. 1999;309:256–74.

    Article  PubMed  CAS  Google Scholar 

  29. Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98(5):927–38.

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Ogunnaike BA, Roberts CJ. Multi-variate approach to global protein aggregation behavior and kinetics: effects of pH, NaCl, and temperature for α-chymotrypsinogen A. J Pharm Sci. 2010;99(2):645–62.

    PubMed  CAS  Google Scholar 

  31. Morris AM, Watzky MA, Finke RG. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta Proteins Proteomics. 2009;1794(3):375–97.

    Article  CAS  Google Scholar 

  32. Andrews JM, Roberts CJ. A Lumry–Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. J Phys Chem B. 2007;111(27):7897–913.

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Roberts CJ. Lumry-eyring nucleated-polymerization model of protein aggregation kinetics. 2. Competing growth via condensation and chain polymerization. J Phys Chem B. 2009;113(19):7020–32.

    Article  PubMed  CAS  Google Scholar 

  34. Roberts CJ. Kinetics of irreversible protein aggregation: analysis of extended Lumry–Eyring models and implications for predicting protein shelf life. J Phys Chem B. 2003;107(5):1194–207.

    Article  CAS  Google Scholar 

  35. Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J Pharm Sci. 2011;100(6):2087–103.

    Article  PubMed  CAS  Google Scholar 

  36. Brummitt RK, Nesta DP, Chang L, Kroetsch AM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci. 2011;100(6):2104–19.

    Article  PubMed  CAS  Google Scholar 

  37. Sahin E, Jordan JL, Spatara ML, Naranjo A, Costanzo JA, Weiss WF, et al. Computational design and biophysical characterization of aggregation-resistant point mutations for γD crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity. Biochemistry (Mosc). 2011;50(5):628–39.

    Article  CAS  Google Scholar 

  38. Sabaté R, Gallardo M, Estelrich J. Temperature dependence of the nucleation constant rate in β amyloid fibrillogenesis. Int J Biol Macromol. 2005;35(1–2):9–13.

    Article  PubMed  Google Scholar 

  39. Auer S, Dobson CM, Vendruscolo M. Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP J. 2007;1(2):137–46.

    Article  PubMed  CAS  Google Scholar 

  40. Lee CC, Walters RH, Murphy RM. Reconsidering the mechanism of polyglutamine peptide aggregation. Biochemistry (Mosc). 2007;46(44):12810–20.

    Article  CAS  Google Scholar 

  41. Nayak A, Sorci M, Krueger S, Belfort G. A universal pathway for amyloid nucleus and precursor formation for insulin. Proteins Struct Funct Bioinforma. 2009;74(3):556–65.

    Article  CAS  Google Scholar 

  42. Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. J Biol Chem. 2005;280(34):30001–8.

    Article  PubMed  CAS  Google Scholar 

  43. Kusumoto Y, Lomakin A, Teplow DB, Benedek GB. Temperature dependence of amyloid beta-protein fibrillization. Proc Natl Acad Sci U S A. 1998;95(21):12277–82.

    Article  PubMed  CAS  Google Scholar 

  44. Smith MI, Sharp JS, Roberts CJ. Nucleation and growth of insulin fibrils in bulk solution and at hydrophobic polystyrene surfaces. Biophys J. 2007;93(6):2143–51.

    Article  PubMed  CAS  Google Scholar 

  45. Mauro M, Craparo EF, Podesta A, Bulone D, Carrotta R, Martorana V, et al. Kinetics of different processes in human insulin amyloid formation. J Mol Biol. 2007;366(1):258–74.

    Article  PubMed  Google Scholar 

  46. Sabate R, Castillo V, Espargaro A, Saupe SJ, Ventura S. Energy barriers for HET-s prion forming domain amyloid formation. FEBS J. 2009;276(18):5053–64.

    Article  PubMed  CAS  Google Scholar 

  47. Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem. 2001;276(14):10737–44.

    Article  PubMed  CAS  Google Scholar 

  48. Morel B, Varela L, Azuaga AI, Conejero-Lara F. Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J. 2010;99(11):3801–10.

    Article  PubMed  CAS  Google Scholar 

  49. Rosenqvist E, Jossang T, Feder J. Thermal properties of human IgG. Mol Immunol. 1987;24(5):495–501.

    Article  PubMed  CAS  Google Scholar 

  50. Wang B, Tchessalov S, Cicerone MT, Warne NW, Pikal MJ. Impact of sucrose level on storage stability of proteins in freeze-dried solids: II. Correlation of aggregation rate with protein structure and molecular mobility. J Pharm Sci. 2008. doi:10.1002/jps.21622.

    Google Scholar 

  51. Duddu SP, Dal Monte PR. Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm Res. 1997;14(5):591–5.

    Article  PubMed  CAS  Google Scholar 

  52. Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res. 2001;18(9):1345–53.

    Article  PubMed  CAS  Google Scholar 

  53. Pérez-Moral N, Adnet C, Noel TR, Parker R. Characterization of the rate of thermally-induced aggregation of β-lactoglobulin and its trehalose mixtures in the glass state. Biomacromolecules. 2010;11(11):2985–92.

    Article  Google Scholar 

  54. Stratton LP, Kelly RM, Rowe J, Shively JE, Smith DD, Carpenter JF, et al. Controlling deamidation rates in a model peptide: effects of temperature, peptide concentration, and additives. J Pharm Sci. 2001;90(12):2141–8.

    Article  PubMed  CAS  Google Scholar 

  55. Roberts CJ, Darrington RT, Whitley MB. Irreversible aggregation of recombinant bovine granulocyte-colony stimulating factor (bG-CSF) and implications for predicting protein shelf life. J Pharm Sci. 2003;92(5):1095–111.

    Article  PubMed  CAS  Google Scholar 

  56. Brummitt RK, Nesta DP, Roberts CJ. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions. J Pharm Sci. 2011;100:4234–43.

    Article  CAS  Google Scholar 

  57. Kayser V, Chennamsetty N, Voynov V, Helk B, Forrer K, Trout BL. Evaluation of a non-arrhenius model for therapeutic monoclonal antibody aggregation. J Pharm Sci. 2011;100(7):2526–42.

    Article  PubMed  CAS  Google Scholar 

  58. Perico N, Purtell J, Dillon TM, Ricci MS. Conformational implications of an inversed pH-dependent antibody aggregation. J Pharm Sci. 2009;98(9):3031–42.

    Article  PubMed  CAS  Google Scholar 

  59. Talla-Singh D, Stites WE. Refinement of noncalorimetric determination of the change in heat capacity, DeltaC(p), of protein unfolding and validation across a wide temperature range. Proteins. 2008;71(4):1607–16.

    Article  PubMed  CAS  Google Scholar 

  60. Rees DC, Robertson AD. Some thermodynamic implications for the thermostability of proteins. Protein Sci. 2001;10(6):1187–94.

    Article  PubMed  CAS  Google Scholar 

  61. Becktel WJ, Schellman JA. Protein stability curves. Biopolymers. 1987;26(11):1859–77.

    Article  PubMed  CAS  Google Scholar 

  62. Wong HJ, Stathopulos PB, Bonner JM, Sawyer M, Meiering EM. Non-linear effects of temperature and urea on the thermodynamics and kinetics of folding and unfolding of hisactophilin. J Mol Biol. 2004;344(4):1089–107.

    Article  PubMed  CAS  Google Scholar 

  63. Kumar S, Tsai CJ, Nussinov R. Maximal stabilities of reversible two-state proteins. Biochemistry (Mosc). 2002;41(17):5359–74.

    Article  CAS  Google Scholar 

  64. Ganesh C, Eswar N, Srivastava S, Ramakrishnan C, Varadarajan R. Prediction of the maximal stability temperature of monomeric globular proteins solely from amino acid sequence. FEBS Lett. 1999;454(1–2):31–6.

    Article  PubMed  CAS  Google Scholar 

  65. Dias CL, Ala-Nissila T, Wong-ekkabut J, Vattulainen I, Grant M, Karttunen M. The hydrophobic effect and its role in cold denaturation. Cryobiology. 2010;60(1):91–9.

    Article  PubMed  CAS  Google Scholar 

  66. Privalov PL. Stability of proteins. Adv Protein Chem. 1979;33:167–241.

    Article  PubMed  CAS  Google Scholar 

  67. Hilser VJ, García-Moreno EB, Oas TG, Kapp G, Whitten ST. A statistical thermodynamic model of the protein ensemble. Chem Rev. 2012;106(5):1545–58.

    Article  Google Scholar 

  68. Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, et al. The structural biology of protein aggregation diseases: fundamental questions and some answers. Acc Chem Res. 2006;39(9):568–75.

    Article  PubMed  CAS  Google Scholar 

  69. Cairoli S, Iametti S, Bonomi F. Reversible and irreversible modifications of beta-lactoglobulin upon exposure to heat. J Protein Chem. 1994;13(3):347–54.

    Article  PubMed  CAS  Google Scholar 

  70. Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, et al. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry. 2008;47(18):5088–100.

    Article  PubMed  CAS  Google Scholar 

  71. Tomizawa H, Yamada H, Imoto T. The mechanism of irreversible inactivation of lysozyme at pH 4 and 100 degrees C. Biochemistry. 1994;33(44):13032–7.

    Article  PubMed  CAS  Google Scholar 

  72. Bernacki JP, Murphy RM. Length-dependent aggregation of uninterrupted polyalanine. Biochemistry (Mosc): Peptides; 2011.

    Google Scholar 

  73. Banks DD, Hambly DM, Scavezze JL, Siska CC, Stackhouse NL, Gadgil HS. The effect of sucrose hydrolysis on the stability of protein therapeutics during accelerated formulation studies. J Pharm Sci. 2009;98(12):4501–10.

    Article  PubMed  CAS  Google Scholar 

  74. Kolhe P, Amend E, Singh SK. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog. 2010;26(3):727–33.

    Article  PubMed  CAS  Google Scholar 

  75. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B: Biomed Sci Appl. 2001;752(2):233–45.

    Article  CAS  Google Scholar 

  76. Duggleby RG. Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Comput Biol Med. 1984;14(4):447–55.

    Article  PubMed  CAS  Google Scholar 

  77. Héberger K, Kemény S, Vidóczy T. On the errors of Arrhenius parameters and estimated rate constant values. Int J Chem Kinet. 1987;19(3):171–81.

    Article  Google Scholar 

  78. Gierczak T, Talukdar RK, Herndon SC, Vaghjiani GL, Ravishankara AR. Rate coefficients for the reactions of hydroxyl radicals with methane and deuterated methanes. J Phys Chem A. 1997;101(17):3125–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank B. Trout, V. Kayser, V. Voynov, and N. Chennamsetty for their suggestions and careful reading of this review in manuscript form. It is a pleasure to submit this review as part of the issue honoring Professor Garnet Peck.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Christopher J. Roberts.

Additional information

Guest Editor: Craig Svensson

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, W., Roberts, C.J. Non-Arrhenius Protein Aggregation. AAPS J 15, 840–851 (2013). https://doi.org/10.1208/s12248-013-9485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9485-3

Key words

  • Arrhenius
  • non-linear
  • prediction techniques
  • protein aggregation
  • shelf life