Skip to main content

Clinical Pharmacokinetics of Buffered Propranolol Sublingual Tablet (Promptol™)—Application of a New “Physiologically Based” Model to Assess Absorption and Disposition

Abstract

Sublingual administration of certain buffered propranolol may improve the rate and extent of absorption compared to oral administration. The main objectives of this study were to (1) compare the plasma propranolol concentrations (Cp-prop) following sublingual administration of a specially buffered formulation (Promptol™) to that following oral administration of Inderal® and (2) evaluate the utility of a special pharmacokinetic model in describing the Cp-prop following sublingual administration. Eighteen healthy volunteers received 10 mg sublingual Promptol™ or oral Inderal®. Multiple Cp-prop were determined and their pharmacokinetics compared. Additional data following sublingual 40 mg Promptol™ or Inderal® were utilized for evaluation of a special advanced compartmental absorption and transit (ACAT) model. For model simulation, the physicochemical parameters were imported from AMET predictor, whereas the pharmacokinetic parameters were calculated and optimized by Gastroplus®. Based on this model, the quantity of drug absorbed via buccal/sublingual mucosa was estimated. Cp-prop was higher at earlier times with 3-fold greater relative bioavailability following sublingual Promptol™ compared to that from oral Inderal®. The special ACAT model provided excellent goodness of fit of Cp-prop-time curve and estimated a 56.6% increase in absorption rate from Promptol™ and higher initial Cp-prop compared to the regular formulation. The modified ACAT model provided a useful approach to describe sublingual absorption of propranolol and clearly demonstrated an improvement of absorption of Promptol™. The sublingual 10 mg Promptol™ achieved not only a similar systemic exposure as 30 mg oral Inderal® but an earlier effective Cp-prop which may be advantageous for certain clinical conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Frishman WH. β-Adrenoceptor antagonists: new drugs and new indications. New Engl J Med. 1981;305(9):500–6. doi:10.1056/NEJM198108273050907.

    PubMed  Article  CAS  Google Scholar 

  2. Angrini M, Leslie JC, Shephard RA. Effects of propranolol, buspirone, pCPA, reserpine, and chlordiazepoxide on open-field behavior. Pharmacol Biochem Behav. 1998;59(2):387–97. doi:10.1016/s0091-3057(97)00457-7.

    PubMed  Article  CAS  Google Scholar 

  3. Fourneret P, Desombre H, de Villard R, Revol O. Interest of propranolol in the treatment of school refusal anxiety: about three clinical observations. Encephale. 2001;27(6):578–84.

    PubMed  CAS  Google Scholar 

  4. Gruber RP, Roberts C, Schooler W, Pitman RK. Preventing postsurgical dissatisfaction syndrome after rhinoplasty with propranolol: a pilot study. Plast Reconstr Surg. 2009;123(3):1072–8. doi:10.1097/PRS.0b013e318199f63f.

    PubMed  Article  CAS  Google Scholar 

  5. Mazzuero G, Galdangelo F, Zotti AM, Bertolotti G, Tavazzi L. Effects of propranolol, atenolol, and chlordesmethyldiazepam on response to mental stress in patients with recent myocardial infarction. Clin Cardiol. 1987;10(6):293–302.

    PubMed  Article  CAS  Google Scholar 

  6. Mealy K, Ngeh N, Gillen P, Fitzpatrick G, Keane FB, Tanner A. Propranolol reduces the anxiety associated with day case surgery. Eur J Surg. 1996;162(1):11–4.

    PubMed  CAS  Google Scholar 

  7. Taylor F, Cahill L. Propranolol for reemergent posttraumatic stress disorder following an event of retraumatization: a case study. J Trauma Stress. 2002;15(5):433–7. doi:10.1023/a:1020145610914.

    PubMed  Article  Google Scholar 

  8. Vaiva G, Ducrocq F, Jezequel K, Averland B, Lestavel P, Brunet A, et al. Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol Psychiatry. 2003;54(9):947–9. doi:10.1016/s0006-3223(03)00412-8.

    PubMed  Article  CAS  Google Scholar 

  9. Mathias NR, Hussain MA. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci. 2010;99(1):1–20. doi:10.1002/jps.21793.

    PubMed  Article  CAS  Google Scholar 

  10. Squier CA, Hall BK. In-vitro permeability of porcine oral mucosa after epithelial separation, stripping and hydration. Arch Oral Biol. 1985;30(6):485–91.

    PubMed  Article  CAS  Google Scholar 

  11. Duchateau GSMJE, Zuidema J, Merkus FWHM. Bioavailability of propranolol after oral, sublingual, and intranasal administration. Pharm Res. 1986;3(2):108–11.

    Article  CAS  Google Scholar 

  12. Chow M, Zuo JZ, Wang Y. Method of enhancing absorptions of transmucosal administration formulations. USA patent, 2008: US7329416.

  13. Wang Y, Zuo Z, Chen X, Tomlinson B, Chow MSS. Improving sublingual delivery of weak base compounds using pHmax concept: application to propranolol. Eur J Pharm Sci. 2010;39(4):272–8. doi:10.1016/j.ejps.2009.12.011.

    PubMed  Article  CAS  Google Scholar 

  14. Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217–24. doi:10.1208/s12248-009-9098-z.

    PubMed  Article  CAS  Google Scholar 

  15. Lukacova V, Woltosz W, Bolger M. Prediction of modified release pharmacokinetics and pharmacodynamics from < b > <i > in vitro </b > immediate release, and intravenous data. AAPS J. 2009;11(2):323–34. doi:10.1208/s12248-009-9107-2.

    PubMed  Article  CAS  Google Scholar 

  16. Bolger M, Lukacova V, Woltosz W. Simulations of the nonlinear dose dependence for substrates of influx and efflux transporters in the human intestine. AAPS J. 2009;11(2):353–63. doi:10.1208/s12248-009-9111-6.

    PubMed  Article  CAS  Google Scholar 

  17. Olanoff LS, Walle T, Cowart TD, Walle UK, Oexmann MJ, Conradi EC. Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis. Clin Pharmacol Ther. 1986;40(4):408–14.

    PubMed  Article  CAS  Google Scholar 

  18. Shargel L, Wu-Pong S, Yu ABC. Applied biopharmaceutics & pharmacokinetics, 5th edn. New York: McGraw-Hill Medical Publishing Division; 2004.

    Google Scholar 

  19. Boxenbaum HG, Riegelman S, Elashoff RM. Statistical estimations in pharmacokinetics. J Pharmacokinet Biopharm. 1974;2(2):123–48.

    PubMed  Article  CAS  Google Scholar 

  20. Kates RE. Absorption kinetics of sublingually administered propranolol. J Med. 1977;8(6):393–402.

    PubMed  CAS  Google Scholar 

  21. Henry JA, Ohashi K, Wadsworth J, Turner P. Drug recovery following buccal absorption of propranolol. Br J Clin Pharmacol. 1980;10(1):61–5.

    PubMed  Article  CAS  Google Scholar 

  22. Gomeni R, Bianchetti G, Sega R, Morselli PL. Pharmacokinetics of propranolol in normal healthy volunteers. J Pharmacokinet Biopharm. 1977;5(3):183–92.

    PubMed  Article  CAS  Google Scholar 

  23. Bruce TJ, Saeed SA. Social anxiety disorder: a common, underrecognized mental disorder. Am Fam Physician. 1999;60(8):2311–20. 22.

    PubMed  CAS  Google Scholar 

  24. Pine M, Favrot L, Smith S, McDonald K, Chidsey CA. Correlation of plasma propranolol concentration with therapeutic response in patients with angina pectoris. Circulation. 1975;52(5):886–93. doi:10.1161/01.cir.52.5.886.

    PubMed  Article  CAS  Google Scholar 

  25. AHFS Drug Information. Bethesda, MD Authority of the Board of the American Society of Health-system Pharmacists; American Hospital Formulary Service; 2012.

  26. Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation. 1971;44(3):413–8. doi:10.1161/01.cir.44.3.413.

    PubMed  Article  CAS  Google Scholar 

  27. Weiss YA, Safar ME, Chevillard C, Frydman A, Simon A, Lemaire P, et al. Comparison of the pharmacokinetics of intravenous dl-propranolol in borderline and permanent hypertension. Eur J Clin Pharmacol. 1976;10(6):387–93.

    PubMed  Article  CAS  Google Scholar 

  28. Mansur Ade P, Ramires JA, Avakian SD, de Paula RS, Pileggi F. [Comparison of the effects of diazepam, nifedipine, propranolol and a combination of nifedipine and propranolol, by sublingual administration, in patients with hypertensive crisis]. Arq Bras Cardiol. 1991;57(4):313–7.

    PubMed  Google Scholar 

  29. Johnston GD. Dose–response relationships with antihypertensive drugs. Pharmacol Therapeut. 1992;55(1):53–93. doi:10.1016/0163-7258(92)90029-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an external grant from Comprehensive Drug Enterprises Ltd., Hong Kong Science Park, Hong Kong.

Conflict of Interest

Yanfeng Wang and Benjamin T.K. Lee are employees of the company, and Moses S.S. Chow is a shareholder of the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses S. S. Chow.

Additional information

Yanfeng Wang and Zhijun Wang contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Wang, Z., Zuo, Z. et al. Clinical Pharmacokinetics of Buffered Propranolol Sublingual Tablet (Promptol™)—Application of a New “Physiologically Based” Model to Assess Absorption and Disposition. AAPS J 15, 787–796 (2013). https://doi.org/10.1208/s12248-013-9479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9479-1

Key words

  • ACAT
  • buffered
  • pharmacokinetics
  • propranolol
  • sublingual