Skip to main content

Advertisement

Log in

Controlled Release of Simvastatin from In situ Forming Hydrogel Triggers Bone Formation in MC3T3-E1 Cells

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Simvastatin (SIM), a drug commonly administered for the treatment of hypercholesterolemia, has been recently reported to induce bone regeneration/formation. In this study, we investigated the properties of hydrogel composed of gelatin–poly(ethylene glycol)–tyramine (GPT) as an efficient SIM delivery vehicle that can trigger osteogenic differentiation. Sustained delivery of SIM was achieved through its encapsulation in an injectable, biodegradable GPT-hydrogel. Cross-linking of the gelatin-based GPT-hydrogel was induced by the reaction of horse radish peroxidase and H2O2. GPT-hydrogels of three different matrix stiffness, 1,800 (GPT-hydrogel1), 5,800 (GPT-hydrogel2), and 8,400 Pa (GPT-hydrogel3) were used. The gelation/degradation time and SIM release profiles of hydrogels loaded with two different concentrations of SIM, 1 and 3 mg/ml, were also evaluated. Maximum swelling times of GPT-hydrogel1, GPT-hydrogel2, and GPT-hydrogel3 were observed to be 6, 12, and 20 days, respectively. All GPT-hydrogels showed complete degradation within 55 days. The in vitro SIM release profiles, investigated in PBS buffer (pH 7.4) at 37°C, exhibited typical biphasic release patterns with the initial burst being more rapid with GPT-hydrogel1 compared with GPT-hydrogel3. Substantial increase in matrix metalloproteinase-13, osteocalcin expression levels, and mineralization were seen in osteogenic differentiation system using MC3T3-E1 cells cultured with GPT-hydrogels loaded with SIM in a dose-dependent manner. This study demonstrated that controlled release of SIM from a biodegradable, injectable GPT-hydrogel had a promising role for long-term treatment of chronic degenerative diseases such as disc degenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SIM:

Simvastatin

HRP:

Horse radish peroxidase

GPT:

Gelatin–poly(ethylene glycol)–tyramine

MMP-13:

Matrix metalloproteinase-13

OC:

Osteocalcin

References

  1. Hicks GE, Morone N, Weiner DK. Degenerative lumbar disc and facet disease in older adults: prevalence and clinical correlates. Spine (Phila Pa 1976). 2009;34(12):1301–6. doi:10.1097/BRS.0b013e3181a18263.

    Article  Google Scholar 

  2. Hassett G, Hart DJ, Manek NJ, Doyle DV, Spector TD. Risk factors for progression of lumbar spine disc degeneration: the Chingford study. Arthritis Rheum. 2003;48(11):3112–7. doi:10.1002/art.11321.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang H, Lin CY. Simvastatin stimulates chondrogenic phenotype of intervertebral disc cells partially through BMP-2 pathway. Spine (Philadelphia, Pa 1976). 2008;33(16):E525–31. doi:10.1097/BRS.0b013e31817c561b.

    Article  Google Scholar 

  4. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292(5519):1160–4. doi:10.1126/science.1059344.

    Article  PubMed  CAS  Google Scholar 

  5. Montagnani A, Gonnelli S, Cepollaro C, Pacini S, Campagna MS, Franci MB, et al. Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women: a 1-year longitudinal study. Bone. 2003;32(4):427–33.

    Article  PubMed  CAS  Google Scholar 

  6. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hatano H, Maruo A, Bolander ME, Sarkar G. Statin stimulates bone morphogenetic protein-2, aggrecan, and type 2 collagen gene expression and proteoglycan synthesis in rat chondrocytes. J Orthop Sci. 2003;8(6):842–8. doi:10.1007/s00776-003-0724-9.

    Article  PubMed  CAS  Google Scholar 

  8. Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280(3):874–7. doi:10.1006/bbrc.2000.4232.

    Article  PubMed  CAS  Google Scholar 

  9. Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, et al. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun. 2003;308(3):458–62.

    Article  PubMed  CAS  Google Scholar 

  10. Garbern JC, Hoffman AS, Stayton PS. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules. 2010;11(7):1833–9. doi:10.1021/bm100318z.

    Article  PubMed  CAS  Google Scholar 

  11. Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, et al. Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials. 2011;32(32):8161–71. doi:10.1016/j.biomaterials.2011.07.045.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang XZ, Jo Lewis P, Chu CC. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials. 2005;26(16):3299–309. doi:10.1016/j.biomaterials.2004.08.024.

    Article  PubMed  CAS  Google Scholar 

  13. Kikuchi A, Okano T. Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev. 2002;54(1):53–77.

    Article  PubMed  CAS  Google Scholar 

  14. Kimura M, Fukumoto K, Watanabe J, Ishihara K. Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. J Biomater Sci Polym Ed. 2004;15(5):631–44.

    Article  PubMed  CAS  Google Scholar 

  15. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321–39.

    Article  PubMed  CAS  Google Scholar 

  16. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388(6645):860–2. doi:10.1038/42218.

    Article  PubMed  CAS  Google Scholar 

  17. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res. 2000;51(2):164–71. doi:10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W.

    Article  PubMed  CAS  Google Scholar 

  18. Hiemstra C, Zhong Z, Li L, Dijkstra PJ, Feijen J. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Biomacromolecules. 2006;7(10):2790–5. doi:10.1021/bm060630e.

    Article  PubMed  CAS  Google Scholar 

  19. Jung JP, Gasiorowski JZ, Collier JH. Fibrillar peptide gels in biotechnology and biomedicine. Biopolymers. 2010;94(1):49–59. doi:10.1002/bip.21326.

    Article  PubMed  CAS  Google Scholar 

  20. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD. Thermosensitive chitosan-pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater. 2009;5(6):1956–65. doi:10.1016/j.actbio.2009.01.040.

    Article  PubMed  CAS  Google Scholar 

  21. Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm. 2008;355(1–2):1–18. doi:10.1016/j.ijpharm.2008.01.057.

    Article  PubMed  Google Scholar 

  22. Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release. 2002;80(1–3):9–28.

    Article  PubMed  CAS  Google Scholar 

  23. Langer R. New methods of drug delivery. Science. 1990;249(4976):1527–33.

    Article  PubMed  CAS  Google Scholar 

  24. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun (Camb). 2005;(34):4312–4. doi: 10.1039/b506989k.

  25. Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 2004;25(7–8):1339–48.

    Article  PubMed  Google Scholar 

  26. Park KM, Shin YM, Joung YK, Shin H, Park KD. In situ forming hydrogels based on tyramine conjugated 4-Arm-PPO-PEO via enzymatic oxidative reaction. Biomacromolecules. 2010;11(3):706–12. doi:10.1021/bm9012875.

    Article  PubMed  CAS  Google Scholar 

  27. Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials. 2009;30(20):3371–7. doi:10.1016/j.biomaterials.2009.03.030.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang H, Wang L, Park JB, Park P, Yang VC, Hollister SJ, et al. Intradiscal injection of simvastatin retards progression of intervertebral disc degeneration induced by stab injury. Arthritis Res Ther. 2009;11(6):R172. doi:10.1186/ar2861.

    Article  PubMed  Google Scholar 

  29. Baker HJ, Lindsay JR, Weisbroth SH. The laboratory rat, volume I: biology and diseases. New York: Academic; 1979. p. 115.

    Google Scholar 

  30. Park KM, Lee Y, Son JY, Oh DH, Lee JS, Park KD. Synthesis and characterizations of in situ cross-linkable gelatin and 4-arm-PPO-PEO hybrid hydrogels via enzymatic reaction for tissue regenerative medicine. Biomacromolecules. 2012;13(3):604–11. doi:10.1021/bm201712z.

    Article  PubMed  CAS  Google Scholar 

  31. Park JB, Zhang H, Lin CY, Chung CP, Byun Y, Park YS, et al. Simvastatin maintains osteoblastic viability while promoting differentiation by partially regulating the expressions of estrogen receptors α. J Surg Res. 2012;174(2):278–83.

    Article  PubMed  CAS  Google Scholar 

  32. Khatiwala CB, Peyton SR, Metzke M, Putnam AJ. The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. J Cell Physiol. 2007;211(3):661–72.

    Article  PubMed  CAS  Google Scholar 

  33. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77–84. doi:10.1016/j.ab.2004.02.002.

    Article  PubMed  CAS  Google Scholar 

  34. Stein D, Lee Y, Schmid MJ, Killpack B, Genrich MA, Narayana N, et al. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol. 2005;76(11):1861–70.

    Article  PubMed  CAS  Google Scholar 

  35. Thylin MR, McConnell JC, Schmid MJ, Reckling RR, Ojha J, Bhattacharyya I, et al. Effects of simvastatin gels on murine calvarial bone. J Periodontol. 2002;73(10):1141–8.

    Article  PubMed  CAS  Google Scholar 

  36. Gutowska A, Jeong B, Jasionowski M. Injectable gels for tissue engineering. Anat Rec. 2001;263(4):342–9. doi:10.1002/ar.1115.

    Article  PubMed  CAS  Google Scholar 

  37. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–81. doi:10.1039/b713009k.

    Article  PubMed  CAS  Google Scholar 

  38. Wright BL, Lai JT, Sinclair AJ. Cerebrospinal fluid and lumbar puncture: a practical review. J Neurol. 2012;259(8):1530–45. doi:10.1007/s00415-012-6413-x.

    Article  PubMed  Google Scholar 

  39. Clarke C, Howard R, Rossor M, Shorvon S. Neurology: a queen aquare textbook. 1st ed. Chichester: Wiley; 2009.

    Google Scholar 

  40. Cartmell S. Controlled release scaffolds for bone tissue engineering. J Pharm Sci. 2009;98(2):430–41. doi:10.1002/jps.21431.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Y, An HS, Tannoury C, Thonar EJ, Freedman MK, Anderson DG. Biological treatment for degenerative disc disease: implications for the field of physical medicine and rehabilitation. Am J Phys Med Rehabil. 2008;87(9):694–702. doi:10.1097/PHM.0b013e31817c1945.

    Article  PubMed  Google Scholar 

  42. Adah F, Benghuzzi H, Tucci M, Russell G, England B. Cholesterol production inhibitor (statin) increased bone healing in surgically created femoral defect in an animal model. Biomed Sci Instrum. 2007;43:95–103.

    PubMed  CAS  Google Scholar 

  43. Benoit DS, Nuttelman CR, Collins SD, Anseth KS. Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration. Biomaterials. 2006;27(36):6102–10. doi:10.1016/j.biomaterials.2006.06.031.

    Article  PubMed  CAS  Google Scholar 

  44. Lee Y, Schmid MJ, Marx DB, Beatty MW, Cullen DM, Collins ME, et al. The effect of local simvastatin delivery strategies on mandibular bone formation in vivo. Biomaterials. 2008;29(12):1940–9. doi:10.1016/j.biomaterials.2007.12.045.

    Article  PubMed  CAS  Google Scholar 

  45. Hayami T, Kapila YL, Kapila S. Divergent upstream osteogenic events contribute to the differential modulation of MG63 cell osteoblast differentiation by MMP-1 (collagenase-1) and MMP-13 (collagenase-3). Matrix Biol. 2011;30(4):281–9. doi:10.1016/j.matbio.2011.04.003.

    Article  PubMed  CAS  Google Scholar 

  46. Nakamura H, Sato G, Hirata A, Yamamoto T. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Bone. 2004;34(1):48–56.

    Article  PubMed  CAS  Google Scholar 

  47. Ortega N, Behonick D, Stickens D, Werb Z. How proteases regulate bone morphogenesis. Ann N Y Acad Sci. 2003;995:109–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding support provided by the National Institutes of Health. The project described was supported by Grant Number R01 AR056649 from NIAMS/NIH. This work was also supported in part by NIH R01 Grant CA114612 and partially sponsored by Grant R31-2008-000-10103-01 from the World Class University project of the MEST and NRF of South Korea. Victor C. Yang is currently a Participating Faculty in the Department of Molecular Medicine and Biopharmaceutical Sciences, College of Medicine, and College of Pharmacy, Seoul National University, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor C. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.S., David, A.E., Park, K.M. et al. Controlled Release of Simvastatin from In situ Forming Hydrogel Triggers Bone Formation in MC3T3-E1 Cells. AAPS J 15, 367–376 (2013). https://doi.org/10.1208/s12248-012-9442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9442-6

KEY WORDS

Navigation