Advertisement

The AAPS Journal

, 11:406 | Cite as

Advancement of Structure-Activity Relationship of Multidrug Resistance-Associated Protein 2 Interactions

  • Li Xing
  • Yiding Hu
  • Yurong LaiEmail author
Review Article Theme: Structure-Activity Relationships for ABC Transporters

Abstract

Multidrug resistance-associated protein 2 (MRP2/ABCC2) is mainly expressed in the apical phase of barrier membranes. It functions as a critical efflux pump in the biliary excretion of endogenous substances, such as conjugated bilirubin and bile salts, as well as many structurally diverse xenobiotics and their metabolites. Due to its important role in defining ADME/Tox properties, efforts have emerged to build the structure–activity relationship (SAR) for MRP2/ABCC2 at early stages of drug discovery process. MRP2/ABCC2 is a member of the integral membrane protein family whose high-resolution crystal structure has not been described. To overcome the obstacle of lacking detailed structural depiction, various molecular modeling approaches have been applied to derive the structural requirements for binding interactions with MRP2/ABCC2 protein, including two-dimensional (2D) and three-dimensional (3D) quantitative SAR (QSAR) analysis, pharmacophore models, and homology modeling of the transporter. Here we summarize recent progresses in understanding the SAR of MRP2/ABCC2 recognition of substrates and/or inhibitors, and describe some of the useful in vitro tools for characterizing the interactions with the transporter.

Key words

ABC transporters ADME/Tox MRP2/ABCC2 structure–activity relationship 

Abbreviations

ADME/Tox

absorption, distribution, metabolism, excretion, and toxicity

QSAR

quantitative structure–activity relationship

SAR

structure–activity relationship

Notes

Acknowledgements

We would like to thank Drs. Gennadiy I. Poda and Joseph C. Fleishaker for their helpful comments and suggestions on our review.

Reference

  1. 1.
    Guido RV, Oliva G, Andricopulo AD. Virtual screening and its integration with modern drug design technologies. Curr Med Chem. 2008;15:37–46.PubMedCrossRefGoogle Scholar
  2. 2.
    Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr. 2001;33:475–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene. 2003;22:7537–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.PubMedCrossRefGoogle Scholar
  5. 5.
    Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92:1295–302.PubMedCrossRefGoogle Scholar
  6. 6.
    Gerk PM, Vore M. Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther. 2002;302:407–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol. 2002;64:635–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Buchler M, Konig J, Brom M, Kartenbeck J, Spring H, Horie T, et al. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996;271:15091–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ito K, Suzuki H, Hirohashi T, Kume K, Shimizu T, Sugiyama Y. Molecular cloning of canalicular multispecific organic anion transporter defective in EHBR. Am J Physiol. 1997;272:G16–22.PubMedGoogle Scholar
  10. 10.
    Suzuki H, Sugiyama Y. Excretion of GSSG and glutathione conjugates mediated by MRP1 and cMOAT/MRP2. Semin Liver Dis. 1998;18:359–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Keppler D, Konig J. Hepatic secretion of conjugated drugs and endogenous substances. Semin Liver Dis. 2000;20:265–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Paulusma CC, van Geer MA, Evers R, Heijn M, Ottenhoff R, Borst P, et al. Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione. Biochem J. 1999;338(Pt 2):393–401.PubMedCrossRefGoogle Scholar
  13. 13.
    Keppler D, Arias IM. Hepatic canalicular membrane. Introduction: transport across the hepatocyte canalicular membrane. FASEB J. 1997;11:15–8.PubMedGoogle Scholar
  14. 14.
    Ito K, Suzuki H, Hirohashi T, Kume K, Shimizu T, Sugiyama Y. Functional analysis of a canalicular multispecific organic anion transporter cloned from rat liver. J Biol Chem. 1998;273:1684–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta. 1999;1461:377–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Kusuhara H, Sugiyama Y. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release. 2002;78:43–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Hulot JS, Villard E, Maguy A, Morel V, Mir L, Tostivint I, et al. A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics. 2005;15:277–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112:71–105.PubMedCrossRefGoogle Scholar
  19. 19.
    Keppler D, Kamisako T, Leier I, Cui Y, Nies AT, Tsujii H, et al. Localization, substrate specificity, and drug resistance conferred by conjugate export pumps of the MRP family. Adv Enzyme Regul. 2000;40:339–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Cui Y, Konig J, Buchholz JK, Spring H, Leier I, Keppler D. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol. 1999;55:929–37.PubMedGoogle Scholar
  21. 21.
    Koike K, Abe T, Hisano T, Kubo T, Wada M, Kohno K, et al. Overexpression of multidrug resistance protein gene in human cancer cell lines selected for drug resistance to epipodophyllotoxins. Jpn J Cancer Res. 1996;87:765–72.PubMedGoogle Scholar
  22. 22.
    Gutmann H, Torok M, Fricker G, Huwyler J, Beglinger C, Drewe J. Modulation of multidrug resistance protein expression in porcine brain capillary endothelial cells in vitro. Drug Metab Dispos. 1999;27:937–41.PubMedGoogle Scholar
  23. 23.
    Miller MD, Margot NA, Hertogs K, Larder B, Miller V. Antiviral activity of tenofovir (PMPA) against nucleoside-resistant clinical HIV samples. Nucleosides Nucleotides Nucleic Acids. 2001;20:1025–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D. ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000;57:1636–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, et al. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob Agents Chemother. 2002;46:344–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Isley WL. Hepatotoxicity of thiazolidinediones. Expert Opin Drug Saf. 2003;2:581–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Tang W. Drug metabolite profiling and elucidation of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2007;3:407–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Hu, K.E. Sampson, B.R. Heyde, K.M. Mandrell, N. Li, A. Zutshi, and Y. Lai. Saturation of Mrp2/Abcc2 Mediated Hepatobiliary Secretion: Nonlinear Pharmacokinetics of A Heterocyclic Compound in Rats after I.V Bolus Administration. Drug Metab Dispos doi: 10.1124/dmd.108.024059 (2009).
  29. 29.
    Suzuki H, Sugiyama Y. Transporters for bile acids and organic anions. Pharm Biotechnol. 1999;12:387–439.PubMedCrossRefGoogle Scholar
  30. 30.
    Raub TJ. P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol Pharm. 2006;3:3–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Stouch TR, Gudmundsson O. Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev. 2002;54:315–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Fong WF, Shen XL, Globisch C, Wiese M, Chen GY, Zhu GY, et al. Methoxylation of 3′, 4′-aromatic side chains improves P-glycoprotein inhibitory and multidrug resistance reversal activities of 7, 8-pyranocoumarin against cancer cells. Bioorg Med Chem. 2008;16:3694–703.PubMedCrossRefGoogle Scholar
  33. 33.
    Choi CH, Kim JH, Kim SH. Reversal of P-glycoprotein-mediated MDR by 5, 7, 3′, 4′, 5′-pentamethoxyflavone and SAR. Biochem Biophys Res Commun. 2004;320:672–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang N, Ayral-Kaloustian S, Nguyen T, Hernandez R, Lucas J, Discafani C, et al. Synthesis and SAR of 6-chloro-4-fluoroalkylamino-2-heteroaryl-5-(substituted) phenylpyrimidines as anti-cancer agents. Bioorg Med Chem. 2009;17:111–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Coburger C, Wollmann J, Baumert C, Krug M, Molnar J, Lage H, et al. Novel insight in structure-activity relationship and bioanalysis of P-glycoprotein targeting highly potent tetrakishydroxymethyl substituted 3, 9-diazatetraasteranes. J Med Chem. 2008;51:5871–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Colabufo NA, Berardi F, Cantore M, Perrone MG, Contino M, Inglese C, et al. Small P-gp modulating molecules: SAR studies on tetrahydroisoquinoline derivatives. Bioorg Med Chem. 2008;16:362–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Pajeva IK, Wiese M. Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (hypothesis). J Med Chem. 2002;45:5671–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang S, Folkes A, Chuckowree I, Cockcroft X, Sohal S, Miller W, et al. Studies on pyrrolopyrimidines as selective inhibitors of multidrug-resistance-associated protein in multidrug resistance. J Med Chem. 2004;47:1329–38.PubMedCrossRefGoogle Scholar
  39. 39.
    Boumendjel A, Baubichon-Cortay H, Trompier D, Perrotton T, Di Pietro A. Anticancer multidrug resistance mediated by MRP1: recent advances in the discovery of reversal agents. Med Res Rev. 2005;25:453–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. Aids. 2002;16:2295–301.PubMedCrossRefGoogle Scholar
  41. 41.
    Jain R, Agarwal S, Mandava NK, Sheng Y, Mitra AK. Interaction of dipeptide prodrugs of saquinavir with multidrug resistance protein-2 (MRP-2): evasion of MRP-2 mediated efflux. Int J Pharm. 2008;362:44–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Han Y-H, Kato Y, Haramura M, Ohta M, Matsuoka H, Sugiyama Y. Physicochemical parameters responsible for the affinity of methotrexate analogs for rat canalicular multispecific organic anion transporter (cMOAT/MRP2). Pharm Res. 2001;18:579–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Ng C, Xiao Y-D, Lum BL, Han Y-H. Quantitative structure-activity relationships of methotrexate and methotrexate analogues transported by the rat multispecific resistance-associated protein 2 (rMrp2). Eur J Pharm Sci. 2005;26:405–413.PubMedCrossRefGoogle Scholar
  44. 44.
    Hirono S, Nakagome I, Imai R, Maeda K, Kusuhara H, Sugiyama Y. Estimation of the three-dimensional pharmacophore of ligands for rat multidrug-resistance-associated protein 2 using ligand-based drug design techniques. Pharm Res. 2005;22:260–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang H, Xiang ML, Zhao YL, Wei YQ, Yang SY. Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors. Eur J Pharm Sci. 2009;36:451–7.PubMedCrossRefGoogle Scholar
  46. 46.
    van Zanden JJ, Wortelboer HM, Bijlsma S, Punt A, Usta M, Bladeren PJ, et al. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem Pharmacol. 2005;69:699–708.PubMedCrossRefGoogle Scholar
  47. 47.
    Lai Y, Xing L, Poda GI, Hu Y. Structure-activity relationships for interaction with multidrug resistance protein 2 (ABCC2/MRP2): the role of torsion angle for a series of biphenyl-substituted heterocycles. Drug Metab Dispos. 2007;35:937–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Pedersen JM, Matsson P, Bergstrom CA, Norinder U, Hoogstraate J, Artursson P. Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J Med Chem. 2008;51:3275–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Ito K, Suzuki H, Sugiyama Y. Charged amino acids in the transmembrane domains are involved in the determination of the substrate specificity of rat Mrp2. Mol. Pharmacol. 2001;59:1077–85.PubMedGoogle Scholar
  50. 50.
    Zelcer N, Huisman MT, Reid G, Wielinga P, Breedveld P, Kuil A, et al. Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J Biol Chem. 2003;278:23538–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Ryu S, Kawabe T, Nada S, Yamaguchi A. Identification of basic residues involved in drug export function of human multidrug resistance-associated protein 2. J Biol Chem. 2000;275:39617–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Dawson R, Locher K. Structure of a bacterial multidrug ABC transporter. Nature. 2006;443:180–185.PubMedCrossRefGoogle Scholar
  53. 53.
    Chang G, Roth C, Reyes C, Pornillos O, Chen Y-J, Chen A. Retraction. Science. 2006;314:1875.PubMedCrossRefGoogle Scholar
  54. 54.
    Williamson G, Aeberli I, Miguet L, Zhang Z, Sanchez MB, Crespy V, et al. Interaction of positional isomers of quercetin glucuronides with the transporter ABCC2 (cMOAT, MRP2). Drug Metab Dispos. 2007;35:1262–1268.PubMedCrossRefGoogle Scholar
  55. 55.
    van Zanden JJ, van der Woude H, Vaessen J, Usta M, Wortelboer HM, Cnubben NHP, et al. The effect of quercetin phase II metabolism on its MRP1 and MRP2 inhibiting potential. Biochem Pharmacol. 2007;74:345–351.PubMedCrossRefGoogle Scholar
  56. 56.
    Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46:27–43.PubMedCrossRefGoogle Scholar
  57. 57.
    Putnam WS, Pan L, Tsutsui K, Takahashi L, Benet LZ. Comparison of bidirectional cephalexin transport across MDCK and caco-2 cell monolayers: interactions with peptide transporters. Pharm Res. 2002;19:27–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Siissalo S, Hannukainen J, Kolehmainen J, Hirvonen J, Kaukonen AM. A Caco-2 cell based screening method for compounds interacting with MRP2 efflux protein. Eur J Pharm Biopharm. 2009;71:332–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Bakos E, Evers R, Szakacs G, Tusnady GE, Welker E, Szabo K, et al. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem. 1998;273:32167–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Evers R, Zaman GJ, van Deemter L, Jansen H, Calafat J, Oomen LC, et al. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J Clin Invest. 1996;97:1211–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Yamaguchi S, Zhao YL, Nadai M, Yoshizumi H, Cen X, Torita S, et al. Involvement of the drug transporters p glycoprotein and multidrug resistance-associated protein Mrp2 in telithromycin transport. Antimicrob Agents Chemother. 2006;50:80–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Xiao Y, Davidson R, Smith A, Pereira D, Zhao S, Soglia J, et al. A 96-well efflux assay to identify ABCG2 substrates using a stably transfected MDCK II cell line. Mol Pharm. 2006;3:45–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Forster F, Volz A, Fricker G. Compound profiling for ABCC2 (MRP2) using a fluorescent microplate assay system. Eur J Pharm Biopharm. 2008;69:396–403.PubMedCrossRefGoogle Scholar
  64. 64.
    Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem. 2002;277:6497–503.PubMedCrossRefGoogle Scholar
  65. 65.
    Evers R, Kool M, van Deemter L, Janssen H, Calafat J, Oomen LC, et al. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest. 1998;101:1310–9.PubMedGoogle Scholar
  66. 66.
    Kopplow K, Letschert K, Konig J, Walter B, Keppler D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol. 2005;68:1031–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Cui Y, Konig J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001;60:934–43.PubMedGoogle Scholar
  68. 68.
    Gao J, Murase O, Schowen RL, Aube J, Borchardt RT. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001;18:171–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Tamai I, Tsuji A, Kin Y. Carrier-mediated transport of cefixime, a new cephalosporin antibiotic, via an organic anion transport system in the rat renal brush-border membrane. J Pharmacol Exp Ther. 1988;246:338–44.PubMedGoogle Scholar
  70. 70.
    Yasumiba S, Tazuma S, Ochi H, Chayama K, Kajiyama G. Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats. Biochem J. 2001;354:591–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Aslamkhan A, Han YH, Walden R, Sweet DH, Pritchard JB. Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. Am J Physiol Renal Physiol. 2003;285:F775–83.PubMedGoogle Scholar
  72. 72.
    Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol. 2007;71:619–27.PubMedCrossRefGoogle Scholar
  73. 73.
    Tabas LB, Dantzig AH. A high-throughput assay for measurement of multidrug resistance protein-mediated transport of leukotriene C4 into membrane vesicles. Anal Biochem. 2002;310:61–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Sakurai A, Kurata A, Onishi Y, Hirano H, Ishikawa T. Prediction of drug-induced intrahepatic cholestasis: in vitro screening and QSAR analysis of drugs inhibiting the human bile salt export pump. Expert Opin Drug Saf. 2007;6:71–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Feng B, Mills J, Davidson R, Mireles R, Janiszewski J, Troutman M, et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008;36:268–75.PubMedCrossRefGoogle Scholar
  76. 76.
    Eneroth A, Astrom E, Hoogstraate J, Schrenk D, Conrad S, Kauffmann HM, et al. Evaluation of a vincristine resistant Caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. Eur J Pharm Sci. 2001;12:205–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27:866–71.PubMedGoogle Scholar
  78. 78.
    Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, et al. Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol. 1998;275:F298–305.PubMedGoogle Scholar
  79. 79.
    Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59:1277–86.PubMedGoogle Scholar
  80. 80.
    Wang EJ, Casciano CN, Clement RP, Johnson WW. In vitro flow cytometry method to quantitatively assess inhibitors of P-glycoprotein. Drug Metab Dispos. 2000;28:522–8.PubMedGoogle Scholar
  81. 81.
    Tiberghien F, Loor F. Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs. 1996;7:568–78.PubMedCrossRefGoogle Scholar
  82. 82.
    Li M, Yuan H, Li N, Song G, Zheng Y, Baratta M, et al. Identification of interspecies difference in efflux transporters of hepatocytes from dog, rat, monkey and human. Eur J Pharm Sci. 2008;35:114–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang EJ, Casciano CN, Clement RP, Johnson WW. Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001;289:580–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003;46:1716–25.PubMedCrossRefGoogle Scholar
  85. 85.
    Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992;267:4854–8.PubMedGoogle Scholar
  86. 86.
    Drueckes P, Schinzel R, Palm D. Photometric microtiter assay of inorganic phosphate in the presence of acid-labile organic phosphates. Anal Biochem. 1995;230:173–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Sauna ZE, Smith MM, Muller M, Kerr KM, Ambudkar SV. The mechanism of action of multidrug-resistance-linked P-glycoprotein. J Bioenerg Biomembr. 2001;33:481–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Garrigues A, Nugier J, Orlowski S, Ezan E. A high-throughput screening microplate test for the interaction of drugs with P-glycoprotein. Anal Biochem. 2002;305:106–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Xia CQ, Xiao G, Liu N, Pimprale S, Fox L, Patten CJ, et al. Comparison of species differences of P-glycoproteins in beagle dog, rhesus monkey, and human using Atpase activity assays. Mol Pharm. 2006;3:78–86.PubMedCrossRefGoogle Scholar
  90. 90.
    Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999;39:361–98.PubMedCrossRefGoogle Scholar
  91. 91.
    Markowitz JS, Devane CL, Liston HL, Boulton DW, Risch SC. The effects of probenecid on the disposition of risperidone and olanzapine in healthy volunteers. Clin Pharmacol Ther. 2002;71:30–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001;299:620–8.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  1. 1.St. Louis LaboratoriesPfizer Global Research and DevelopmentChesterfieldUSA

Personalised recommendations