Cannabinoids, Endocannabinoids, and Related Analogs in Inflammation

Abstract

This review covers reports published in the last 5 years on the anti-inflammatory activities of all classes of cannabinoids, including phytocannabinoids such as tetrahydrocannabinol and cannabidiol, synthetic analogs such as ajulemic acid and nabilone, the endogenous cannabinoids anandamide and related compounds, namely, the elmiric acids, and finally, noncannabinoid components of Cannabis that show anti-inflammatory action. It is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. A possible mechanism for these actions is suggested involving increased production of eicosanoids that promote the resolution of inflammation. This differentiates these cannabinoids from cyclooxygenase-2 inhibitors that suppress the synthesis of eicosanoids that promote the induction of the inflammatory process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AJA:

ajulemic acid

AG:

arachidonoyl glycerol

CBCr:

cannabichromene

CBD:

cannabidiol

CBN:

cannabinol

EC:

endocannabinoid

EMA:

elmiric acid

FAAH:

fatty acid amidohydrolase

PEA:

palmitoyl ethanolamide

THC:

tetrahydrocannabinol

References

  1. 1.

    S. H. Burstein. The cannabinoid acids: nonpsychoactive derivatives with therapeutic potential. Pharmacol. Ther. 82(1):87–96 (1999).

    PubMed  CAS  Google Scholar 

  2. 2.

    S. Burstein. The elmiric acids: biologically active anandamide analogs. Neuropharmacology. 55:1259–1264 (2007).

    PubMed  Google Scholar 

  3. 3.

    S. Burstein. Ajulemic acid (IP-751): synthesis, proof of principle, toxicity studies, and clinical trials. AAPS J. 7(1):E143–148 (2005).

    PubMed  CAS  Google Scholar 

  4. 4.

    R. B. Zurier. Prospects for cannabinoids as anti-inflammatory agents. J. Cell Biochem. 88(3):462–466 (2003).

    PubMed  CAS  Google Scholar 

  5. 5.

    J. Gertsch, M. Leonti, S. Raduner, I. Racz, J. Z. Chen, X. Q. Xie, K. H. Altmann, M. Karsak, and A. Zimmer. Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. U. S. A. 105(26):9099–9104 (2008).

    PubMed  CAS  Google Scholar 

  6. 6.

    T. W. Klein, and G. A. Cabral. Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J Neuroimmune Pharmacol. 1(1):50–64 (2006).

    PubMed  Google Scholar 

  7. 7.

    T. W. Klein. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5(5):400–411 (2005).

    PubMed  CAS  Google Scholar 

  8. 8.

    T. W. Klein, and C. A. Newton. Therapeutic potential of cannabinoid-based drugs. Adv. Exp. Med. Biol. 601:395–413 (2007).

    PubMed  Google Scholar 

  9. 9.

    J. P. Buchweitz, P. W. Karmaus, K. J. Williams, J. R. Harkema, and N. E. Kaminski. Targeted deletion of cannabinoid receptors CB1 and CB2 produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Delta9-tetrahydrocannabinol. J. Leukoc. Biol. 83(3):785–796 (2008).

    PubMed  CAS  Google Scholar 

  10. 10.

    C. Fimiani, T. Liberty, A. J. Aquirre, I. Amin, N. Ali, and G. B. Stefano. Opiate, cannabinoid, and eicosanoid signaling converges on common intracellular pathways nitric oxide coupling. Prostaglandins Other Lipid Mediat. 57(1):23–34 (1999).

    PubMed  CAS  Google Scholar 

  11. 11.

    P. F. Sumariwalla, R. Gallily, S. Tchilibon, E. Fride, R. Mechoulam, and M. Feldmann. A novel synthetic, nonpsychoactive cannabinoid acid (HU-320) with antiinflammatory properties in murine collagen-induced arthritis. Arthritis Rheum. 50(3):985–998 (2004).

    PubMed  CAS  Google Scholar 

  12. 12.

    B. Costa, M. Colleoni, S. Conti, D. Parolaro, C. Franke, A. E. Trovato, and G. Giagnoni. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn Schmiedebergs Arch. Pharmacol. 369(3):294–299 (2004).

    PubMed  CAS  Google Scholar 

  13. 13.

    B. Costa, A. E. Trovato, F. Comelli, G. Giagnoni, and M. Colleoni. The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. Eur. J. Pharmacol. 556(1–3):75–83 (2007).

    PubMed  CAS  Google Scholar 

  14. 14.

    G. Esposito, D. De Filippis, M. C. Maiuri, D. De Stefano, R. Carnuccio, and T. Iuvone. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci. Lett. 399(1–2):91–95 (2006).

    PubMed  CAS  Google Scholar 

  15. 15.

    G. Esposito, C. Scuderi, C. Savani, L. Steardo Jr., D. De Filippis, P. Cottone, T. Iuvone, V. Cuomo, and L. Steardo. Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br. J. Pharmacol. 151(8):1272–1279 (2007).

    PubMed  CAS  Google Scholar 

  16. 16.

    E. D. Giudice, L. Rinaldi, M. Passarotto, F. Facchinetti, A. D'Arrigo, A. Guiotto, M. D. Carbonare, L. Battistin, and A. Leon. Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2H3 mast cells. J. Leukoc. Biol. 81(6):1512–1522 (2007).

    PubMed  Google Scholar 

  17. 17.

    A. Thomas, G. L. Baillie, A. M. Phillips, R. K. Razdan, R. A. Ross, and R. G. Pertwee. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br. J. Pharmacol. 150(5):613–623 (2007).

    PubMed  CAS  Google Scholar 

  18. 18.

    D. McHugh, C. Tanner, R. Mechoulam, R. G. Pertwee, and R. A. Ross. Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol. Pharmacol. 73(2):441–450 (2008).

    PubMed  CAS  Google Scholar 

  19. 19.

    R. Capasso, F. Borrelli, G. Aviello, B. Romano, C. Scalisi, F. Capasso, and A. A. Izzo. Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br. J. Pharmacol. 154(5):1001–1008 (2008).

    PubMed  CAS  Google Scholar 

  20. 20.

    S. Ben-Shabat, L. O. Hanus, G. Katzavian, and R. Gallily. New cannabidiol derivatives: synthesis, binding to cannabinoid receptor, and evaluation of their antiinflammatory activity. J. Med. Chem. 49(3):1113–1117 (2006).

    PubMed  CAS  Google Scholar 

  21. 21.

    M. Rajesh, P. Mukhopadhyay, S. Batkai, G. Hasko, L. Liaudet, J. W. Huffman, A. Csiszar, Z. Ungvari, K. Mackie, S. Chatterjee, and P. Pacher. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am. J. Physiol. 293(4):H2210–2218 (2007).

    CAS  Google Scholar 

  22. 22.

    E. Russo, and G. W. Guy. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med. Hypotheses. 66(2):234–246 (2006).

    PubMed  CAS  Google Scholar 

  23. 23.

    D. R. Blake, P. Robson, M. Ho, R. W. Jubb, and C. S. McCabe. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology (Oxford, England). 45(1):50–52 (2006).

    CAS  Google Scholar 

  24. 24.

    S. H. Burstein, M. Karst, U. Schneider, and R. B. Zurier. Ajulemic acid: a novel cannabinoid produces analgesia without a “high”. Life Sci. 75(12):1513–1522 (2004).

    PubMed  CAS  Google Scholar 

  25. 25.

    J. L. Wiley. Ajulemic acid. IDrugs. 8(12):1002–1011 (2005).

    PubMed  CAS  Google Scholar 

  26. 26.

    R. B. Zurier, R. G. Rossetti, J. H. Lane, J. M. Goldberg, S. A. Hunter, and S. H. Burstein. Dimethylheptyl-THC-11 oic acid: a nonpsychoactive antiinflammatory agent with a cannabinoid template structure. Arthritis Rheum. 41(1):163–170 (1998).

    PubMed  CAS  Google Scholar 

  27. 27.

    D. R. Johnson, J. A. Stebulis, R. G. Rossetti, S. H. Burstein, and R. B. Zurier. Suppression of fibroblast metalloproteinases by ajulemic acid, a nonpsychoactive cannabinoid acid. J. Cell Biochem. 100(1):184–190 (2007).

    PubMed  CAS  Google Scholar 

  28. 28.

    J. Parker, F. Atez, R. G. Rossetti, A. Skulas, R. Patel, and R. B. Zurier. Suppression of human macrophage interleukin-6 by a nonpsychoactive cannabinoid acid. Rheumatol. Int. 28(7):631–635 (2008).

    PubMed  CAS  Google Scholar 

  29. 29.

    J. A. Stebulis, D. R. Johnson, R. G. Rossetti, S. H. Burstein, and R. B. Zurier. Ajulemic acid, a synthetic cannabinoid acid, induces an antiinflammatory profile of eicosanoids in human synovial cells. Life Sci. 83(19–20):666–670 (2008) doi:10.1016/j.lfs.2008.09.004.

    PubMed  CAS  Google Scholar 

  30. 30.

    R. B. Zurier, Y. -P. Sun, K. L. George, J. A. Stebulis, R. G. Rossetti, A. Skulas, E. Judge, C. N. Serhan. Ajulemic acid, a synthetic cannabinoid, increases formation of the endogenous proresolving and anti-inflammatory eicosanoid, lipoxin A4. FASEB J. (2009) doi:10.1096/fj.08-118323.

  31. 31.

    A. Dyson, M. Peacock, A. Chen, J. P. Courade, M. Yaqoob, A. Groarke, C. Brain, Y. Loong, and A. Fox. Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat. Pain. 116(1–2):129–137 (2005).

    PubMed  CAS  Google Scholar 

  32. 32.

    A. Fox, and S. Bevan. Therapeutic potential of cannabinoid receptor agonists as analgesic agents. Expert. Opin. Investig. Drugs. 14(6):695–703 (2005).

    PubMed  CAS  Google Scholar 

  33. 33.

    R. E. Vann, C. D. Cook, B. R. Martin, and J. L. Wiley. Cannabimimetic properties of ajulemic acid. J. Pharmacol. Exp. Ther. 320(2):678–686 (2007).

    PubMed  CAS  Google Scholar 

  34. 34.

    V. A. Mitchell, S. Aslan, R. Safaei, and C. W. Vaughan. Effect of the cannabinoid ajulemic acid on rat models of neuropathic and inflammatory pain. Neurosci. Lett. 382(3):231–235 (2005).

    PubMed  CAS  Google Scholar 

  35. 35.

    M. Karst, K. Salim, S. Burstein, I. Conrad, L. Hoy, and U. Schneider. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA. 290(13):1757–1762 (2003).

    PubMed  CAS  Google Scholar 

  36. 36.

    A. L. Ambrosio, S. M. Dias, I. Polikarpov, R. B. Zurier, S. H. Burstein, and R. C. Garratt. Ajulemic acid, a synthetic nonpsychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 282(25):18625–18633 (2007).

    PubMed  CAS  Google Scholar 

  37. 37.

    J. Liu, H. Li, S. H. Burstein, R. B. Zurier, and J. D. Chen. Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid. Mol. Pharmacol. 63(5):983–992 (2003).

    PubMed  CAS  Google Scholar 

  38. 38.

    A. L. Ambrosio, S. M. Dias, I. Polikarpov, R. B. Zurier, S. H. Burstein, and R. C. Garratt. Ajulemic acid, a synthetic nonpsychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome proliferator-activated receptor {gamma}. J. Biol. Chem. 282(25):18625–18633 (2007).

    PubMed  CAS  Google Scholar 

  39. 39.

    S. L. Teitelbaum, and F. P. Ross. Genetic regulation of osteoclast development and function. Nat. Rev. 4(8):638–649 (2003).

    CAS  Google Scholar 

  40. 40.

    K. L. George, L. H. Saltman, G. S. Stein, J. B. Lian, and R. B. Zurier. Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells. J. Cell Physiol. 214(3):714–720 (2008).

    PubMed  CAS  Google Scholar 

  41. 41.

    R. Q. Skrabek, L. Galimova, K. Ethans, and D. Perry. Nabilone for the treatment of pain in fibromyalgia. J. Pain. 9(2):164–173 (2008).

    PubMed  CAS  Google Scholar 

  42. 42.

    P. Beaulieu, and M. Ware. Reassessment of the role of cannabinoids in the management of pain. Curr. Opin. Anaesthesiol. 20(5):473–477 (2007).

    PubMed  Google Scholar 

  43. 43.

    P. Beaulieu. Effects of nabilone, a synthetic cannabinoid, on postoperative pain. Can. J. Anaesth. 53(8):769–775 (2006).

    PubMed  Article  Google Scholar 

  44. 44.

    C. A. Lunn, J. S. Fine, A. Rojas-Triana, J. V. Jackson, X. Fan, T. T. Kung, W. Gonsiorek, M. A. Schwarz, B. Lavey, J. A. Kozlowski, S. K. Narula, D. J. Lundell, R. W. Hipkin, and L. A. Bober. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J. Pharmacol. Exp. Ther. 316(2):780–788 (2006).

    PubMed  CAS  Google Scholar 

  45. 45.

    E. Selvi, S. Lorenzini, E. Garcia-Gonzalez, R. Maggio, P. E. Lazzerini, P. L. Capecchi, E. Balistreri, A. Spreafico, S. Niccolini, G. Pompella, M. R. Natale, F. Guideri, F. Laghi Pasini, M. Galeazzi, and R. Marcolongo. Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes. Clin. Exp. Rheumatol. 26(4):574–581 (2008).

    PubMed  CAS  Google Scholar 

  46. 46.

    E. C. Mbvundula, R. A. Bunning, and K. D. Rainsford. Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage. Biochem. Pharmacol. 69(4):635–640 (2005).

    PubMed  CAS  Google Scholar 

  47. 47.

    L. Giannini, S. Nistri, R. Mastroianni, L. Cinci, A. Vannacci, C. Mariottini, M. B. Passani, P. F. Mannaioni, D. Bani, and E. Masini. Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs. J. Cell. Mol. Med. 12(6A):2381–2394 (2008).

    PubMed  CAS  Google Scholar 

  48. 48.

    J. C. Ashton, J. L. Wright, J. M. McPartland, and J. D. Tyndall. Cannabinoid CB1 and CB2 receptor ligand specificity and the development of CB2-selective agonists. Curr. Med. Chem. 15(14):1428–1443 (2008).

    PubMed  CAS  Google Scholar 

  49. 49.

    D. G. Deutsch, N. Ueda, and S. Yamamoto. The fatty acid amide hydrolase (FAAH). Prostaglandins Leukot. Essent. Fatty Acids. 66(2–3):201–210 (2002).

    PubMed  CAS  Google Scholar 

  50. 50.

    A. Giuffrida, M. Beltramo, and D. Piomelli. Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. J. Pharmacol. Exp. Ther. 298(1):7–14 (2001).

    PubMed  CAS  Google Scholar 

  51. 51.

    R. A. Puffenbarger. Molecular biology of the enzymes that degrade endocannabinoids. Curr. Drug Targets CNS Neurol. Disord. 4(6):625–631 (2005).

    PubMed  CAS  Google Scholar 

  52. 52.

    N. Ueda, K. Tsuboi, and D. M. Lambert. A second N-acylethanolamine hydrolase in mammalian tissues. Neuropharmacology. 48(8):1079–1085 (2005).

    PubMed  CAS  Google Scholar 

  53. 53.

    A. Giuffrida, and D. Piomelli. The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem. Phys. Lipids. 108(1–2):151–158 (2000).

    PubMed  CAS  Google Scholar 

  54. 54.

    H. Schuel, L. J. Burkman, J. Lippes, K. Crickard, E. Forester, D. Piomelli, and A. Giuffrida. N-Acylethanolamines in human reproductive fluids. Chem. Phys. Lipids. 121(1–2):211–227 (2002).

    PubMed  CAS  Google Scholar 

  55. 55.

    G. Kunos, Z. Jarai, K. Varga, J. Liu, L. Wang, and J. A. Wagner. Cardiovascular effects of endocannabinoids—the plot thickens. Prostaglandins Other Lipid Mediat. 61(1–2):71–84 (2000).

    PubMed  CAS  Google Scholar 

  56. 56.

    A. H. Lichtman, S. A. Varvel, and B. R. Martin. Endocannabinoids in cognition and dependence. Prostaglandins Leukot. Essent. Fatty Acids. 66(2–3):269–285 (2002).

    PubMed  CAS  Google Scholar 

  57. 57.

    M. Maccarrone, K. Falciglia, M. Di Rienzo, and A. Finazzi-Agro. Endocannabinoids, hormone-cytokine networks and human fertility. Prostaglandins Leukot. Essent. Fatty Acids. 66(2–3):309–317 (2002).

    PubMed  CAS  Google Scholar 

  58. 58.

    E. Murillo-Rodríguez, M. Sánchez-Alavez, L. Navarro, D. Martínez-González, R. Drucker-Colín, and O. Prospéro-García. Anandamide modulates sleep and memory in rats. Brain Res. 812(1–2):270–274 (1998).

    PubMed  Google Scholar 

  59. 59.

    D. Parolaro, P. Massi, T. Rubino, and E. Monti. Endocannabinoids in the immune system and cancer. Prostaglandins Leukot. Essent. Fatty Acids. 66(2–3):319–332 (2002).

    PubMed  CAS  Google Scholar 

  60. 60.

    J. M. Walker, and S. M. Huang. Endocannabinoids in pain modulation. Prostaglandins Leukot. Essent. Fatty Acids. 66(2–3):235–242 (2002).

    PubMed  CAS  Google Scholar 

  61. 61.

    A. C. Howlett, and S. Mukhopadhyay. Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem. Phys. Lipids. 108(1–2):53–70 (2000).

    PubMed  CAS  Google Scholar 

  62. 62.

    H. B. Bradshaw, N. Rimmerman, J. F. Krey, and J. M. Walker. Sex and hormonal cycle differences in rat brain levels of pain-related cannabimimetic lipid mediators. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(2):R349–358 (2006).

    PubMed  CAS  Google Scholar 

  63. 63.

    H. B. Bradshaw, and J. M. Walker. The expanding field of cannabimimetic and related lipid mediators. Br. J. Pharmacol. 144(4):459–465 (2005).

    PubMed  CAS  Google Scholar 

  64. 64.

    L. De Petrocellis, D. Melck, T. Bisogno, and V. Di Marzo. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chem. Phys. Lipids. 108(1–2):191–209 (2000).

    PubMed  Google Scholar 

  65. 65.

    H. Schwarz, F. J. Blanco, and M. Lotz. Anadamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. J. Neuroimmunol. 55(1):107–115 (1994).

    PubMed  CAS  Google Scholar 

  66. 66.

    M. Maccarrone, T. Lorenzon, M. Bari, G. Melino, and A. Finazzi-Agro. Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J. Biol. Chem. 275(41):31938–31945 (2000).

    PubMed  CAS  Google Scholar 

  67. 67.

    C. E. Rockwell, N. T. Snider, J. T. Thompson, J. P. Vanden Heuvel, and N. E. Kaminski. Interleukin-2 suppression by 2-arachidonyl glycerol is mediated through peroxisome proliferator activated receptor{gamma} independently of cannabinoid receptors 1 and 2. Mol. Pharmacol. 70(1):101–111 (2006).

    PubMed  CAS  Google Scholar 

  68. 68.

    B. L. Kaplan, Y. Ouyang, A. Herring, S. S. Yea, R. Razdan, and N. E. Kaminski. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2′-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide. Toxicol. Appl. Pharmacol. 205(2):107–115 (2005).

    PubMed  CAS  Google Scholar 

  69. 69.

    B. L. Kaplan, Y. Ouyang, C. E. Rockwell, G. K. Rao, and N. E. Kaminski. 2-Arachidonoyl-glycerol suppresses interferon-gamma production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2. J. Leukoc. Biol. 77(6):966–974 (2005).

    PubMed  CAS  Google Scholar 

  70. 70.

    C. E. Rockwell, and N. E. Kaminski. A cyclooxygenase metabolite of anandamide causes inhibition of interleukin-2 secretion in murine splenocytes. J. Pharmacol. Exp. Ther. 311(2):683–690 (2004).

    PubMed  CAS  Google Scholar 

  71. 71.

    J. Li, N. E. Kaminski, and D. H. Wang. Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor. Hypertension. 41(3 Pt 2):757–762 (2003).

    PubMed  CAS  Google Scholar 

  72. 72.

    D. Centonze, M. Bari, S. Rossi, C. Prosperetti, R. Furlan, F. Fezza, V. De Chiara, L. Battistini, G. Bernardi, S. Bernardini, G. Martino, and M. Maccarrone. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain. 130(Pt 10):2543–2553 (2007).

    PubMed  Google Scholar 

  73. 73.

    D. Centonze, A. Finazzi-Agro, G. Bernardi, and M. Maccarrone. The endocannabinoid system in targeting inflammatory neurodegenerative diseases. Trends Pharmacol. Sci. 28(4):180–187 (2007).

    PubMed  CAS  Google Scholar 

  74. 74.

    J. LoVerme, G. La Rana, R. Russo, A. Calignano, and D. Piomelli. The search for the palmitoylethanolamide receptor. Life Sci. 77(14):1685–1698 (2005).

    PubMed  CAS  Google Scholar 

  75. 75.

    G. Re, R. Barbero, A. Miolo, and V. Di Marzo. Palmitoylethanolamide, endocannabinoids and related cannabimimetic compounds in protection against tissue inflammation and pain: potential use in companion animals. Vet. J. 173(1):21–30 (2007).

    PubMed  CAS  Google Scholar 

  76. 76.

    M. Dalle Carbonare, E. Del Giudice, A. Stecca, D. Colavito, M. Fabris, A. D'Arrigo, D. Bernardini, M. Dam, and A. Leon. A saturated N-acylethanolamine other than N-palmitoyl ethanolamine with anti-inflammatory properties: a neglected story. J. Neuroendocrinol. 20(Suppl 1):26–34 (2008).

    PubMed  CAS  Google Scholar 

  77. 77.

    L. E. Wise, R. Cannavacciulo, B. F. Cravatt, B. F. Martin, and A. H. Lichtman. Evaluation of fatty acid amides in the carrageenan-induced paw edema model. Neuropharmacology. 54(1):181–188 (2008).

    PubMed  CAS  Google Scholar 

  78. 78.

    G. D'Argenio, S. Petrosino, C. Gianfrani, M. Valenti, G. Scaglione, I. Grandone, S. Nigam, I. Sorrentini, G. Mazzarella, and V. Di Marzo. Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. J. Mol. Med. (Berlin, Germany). 85(5):523–530 (2007).

    Google Scholar 

  79. 79.

    Y. Avraham, I. Magen, O. Zolotarev, L. Vorobiav, A. Nachmias, O. Pappo, Y. Ilan, E. M. Berry, and Z. Ackerman. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist, in various rat tissues during the evolution of experimental cholestatic liver disease. Prostaglandins Leukot. Essent. Fatty Acids. 79(1–2):35–40 (2008).

    PubMed  CAS  Google Scholar 

  80. 80.

    F. Massa, G. Marsicano, H. Hermann, A. Cannich, K. Monory, B. F. Cravatt, G. L. Ferri, A. Sibaev, M. Storr, and B. Lutz. The endogenous cannabinoid system protects against colonic inflammation. J. Clin. Invest. 113(8):1202–1209 (2004).

    PubMed  CAS  Google Scholar 

  81. 81.

    Y. Nakajima, Y. Furuichi, K. K. Biswas, T. Hashiguchi, K. Kawahara, K. Yamaji, T. Uchimura, Y. Izumi, and I. Maruyama. Endocannabinoid, anandamide in gingival tissue regulates the periodontal inflammation through NF-kappaB pathway inhibition. FEBS Lett. 580(2):613–619 (2006).

    PubMed  CAS  Google Scholar 

  82. 82.

    J. Zhang, and C. Chen. Endocannabinoid 2-arachidonoylglycerol protects neurons by limiting COX-2 elevation. J. Biol. Chem. 283(33):22601–22611 (2008).

    PubMed  CAS  Google Scholar 

  83. 83.

    R. Sancho, M. A. Calzado, V. Di Marzo, G. Appendino, and E. Munoz. Anandamide inhibits nuclear factor-kappaB activation through a cannabinoid receptor-independent pathway. Mol. Pharmacol. 63(2):429–438 (2003).

    PubMed  CAS  Google Scholar 

  84. 84.

    S. M. Huang, T. Bisogno, T. J. Petros, S. Y. Chang, P. A. Zavitsanos, R. E. Zipkin, R. Sivakumar, A. Coop, D. Y. Maeda, L. De Petrocellis, S. Burstein, V. Di Marzo, and J. M. Walker. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J. Biol. Chem. 276(46):42639–42644 (2001).

    PubMed  CAS  Google Scholar 

  85. 85.

    S. M. A. Burstein, W. Pearson, T. Rooney, B. Yagen, R. Zipkin, A. Zurier. Symposium on Cannabinoids, pp 31 (1997).

  86. 86.

    J. M. Walker, S. M. Huang, N. M. Strangman, K. Tsou, and M. C. Sanudo-Pena. Pain modulation by release of the endogenous cannabinoid anandamide. Proc. Natl. Acad. Sci. U. S. A. 96(21):12198–12203 (1999).

    PubMed  CAS  Google Scholar 

  87. 87.

    R. G. Pertwee. Cannabinoid receptors and pain. Prog. Neurobiol. 63(5):569–611 (2001).

    PubMed  CAS  Google Scholar 

  88. 88.

    R. G. Pertwee. The ring test: a quantitative method for assessing the ‘cataleptic’ effect of cannabis in mice. Br. J. Pharmacol. 46(4):753–763 (1972).

    PubMed  CAS  Google Scholar 

  89. 89.

    T. Sheskin, L. Hanus, J. Slager, Z. Vogel, and R. Mechoulam. Structural requirements for binding of anandamide-type compounds to the brain cannabinoid receptor. J. Med. Chem. 40(5):659–667 (1997).

    PubMed  CAS  Google Scholar 

  90. 90.

    C. R. Hiley, and S. S. Kaup. GPR55 and the vascular receptors for cannabinoids. Br. J. Pharmacol. 152(5):559–561 (2007).

    PubMed  CAS  Google Scholar 

  91. 91.

    D. G. Johns, D. J. Behm, D. J. Walker, Z. Ao, E. M. Shapland, D. A. Daniels, M. Riddick, S. Dowell, P. C. Staton, P. Green, U. Shabon, W. Bao, N. Aiyar, T. L. Yue, A. J. Brown, A. D. Morrison, and S. A. Douglas. The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. Br. J. Pharmacol. 152(5):825–831 (2007).

    PubMed  CAS  Google Scholar 

  92. 92.

    S. Oka, K. Nakajima, A. Yamashita, S. Kishimoto, and T. Sugiura. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun. 362(4):928–934 (2007).

    PubMed  CAS  Google Scholar 

  93. 93.

    A. L. Wiles, R. J. Pearlman, M. Rosvall, K. R. Aubrey, and R. J. Vandenberg. N-Arachidonyl-glycine inhibits the glycine transporter, GLYT2a. J. Neurochem. 99:781–786 (2006).

    PubMed  CAS  Google Scholar 

  94. 94.

    Z. Yang, K. R. Aubrey, I. Alroy, R. J. Harvey, R. J. Vandenberg, and J. W. Lynch. Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. Biochem. Pharmacol. 76(8):1014–1023 (2008).

    PubMed  CAS  Google Scholar 

  95. 95.

    L. C. Samuelson, L. J. Swanberg, and I. Gantz. Mapping of the novel G protein-coupled receptor Gpr18 to distal mouse chromosome 14. Mamm. Genome. 7(12):920–921 (1996).

    PubMed  CAS  Google Scholar 

  96. 96.

    M. Kohno, H. Hasegawa, A. Inoue, M. Muraoka, T. Miyazaki, K. Oka, and M. Yasukawa. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 347(3):827–832 (2006).

    PubMed  CAS  Google Scholar 

  97. 97.

    Y. Oh da, J. M. Yoon, M. J. Moon, J. I. Hwang, H. Choe, J. Y. Lee, J. I. Kim, S. Kim, H. Rhim, D. K. O'Dell, J. M. Walker, H. S. Na, M. G. Lee, H. B. Kwon, K. Kim, and J. Y. Seong. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J. Biol. Chem. 283(30):21054–21064 (2008).

    PubMed  Google Scholar 

  98. 98.

    J. J. Prusakiewicz, P. J. Kingsley, K. R. Kozak, and L. J. Marnett. Selective oxygenation of N-arachidonylglycine by cyclooxygenase-2. Biochem. Biophys. Res. Commun. 296(3):612–617 (2002).

    PubMed  CAS  Google Scholar 

  99. 99.

    H. B. Bradshaw, E. Verfring, J. A. Jahnsen, O'Dell, S. Burstein, M. J. Walker. ICRS Symposium on Cannabinoids, Clearwater, FL, (2005).

  100. 100.

    G. Milman, Y. Maor, S. Abu-Lafi, M. Horowitz, R. Gallily, S. Batkai, F. M. Mo, L. Offertaler, P. Pacher, G. Kunos, and R. Mechoulam. N-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties. Proc. Natl. Acad. Sci. U. S. A. 103(7):2428–2433 (2006).

    PubMed  CAS  Google Scholar 

  101. 101.

    J. C. Sipe, N. Arbour, A. Gerber, and E. Beutler. Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J. Leukoc. Biol. 78(1):231–238 (2005).

    PubMed  CAS  Google Scholar 

  102. 102.

    S. H. Burstein, J. K. Adams, H. B. Bradshaw, C. Fraioli, R. G. Rossetti, R. A. Salmonsen, J. W. Shaw, J. M. Walker, R. E. Zipkin, and R. B. Zurier. Potential anti-inflammatory actions of the elmiric (lipoamino) acids. Bioorg. Med. Chem. 15(10):3345–3355 (2007).

    PubMed  CAS  Google Scholar 

  103. 103.

    B. F. Cravatt, K. Demarest, M. P. Patricelli, M. H. Bracey, D. K. Giang, B. R. Martin, and A. H. Lichtman. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. U. S. A. 98(16):9371–9376 (2001).

    PubMed  CAS  Google Scholar 

  104. 104.

    M. Cascio, A. Minassi, A. Ligresti, G. Appendino, S. Burstein, and V. Di Marzo. A structure-activity relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide hydrolase. Biochem. Biophys. Res. Commun. 314(1):192–196 (2004).

    Google Scholar 

  105. 105.

    L. C. Bell-Parikh, T. Ide, J. A. Lawson, P. McNamara, M. Reilly, and G. A. FitzGerald. Biosynthesis of 15-deoxy-delta12,14-PGJ2 and the ligation of PPARgamma. J. Clin. Invest. 112(6):945–955 (2003).

    PubMed  CAS  Google Scholar 

  106. 106.

    S. R. Smith, G. Denhardt, and C. Terminelli. The anti-inflammatory activities of cannabinoid receptor ligands in mouse peritonitis models. Eur. J. Pharmacol. 432(1):107–119 (2001).

    PubMed  CAS  Google Scholar 

  107. 107.

    C. A. Audette, and S. Burstein. Inhibition of leukocyte adhesion by the in vivo and in vitro administration of cannabinoids. Life Sci. 47(9):753–759 (1990).

    PubMed  CAS  Google Scholar 

  108. 108.

    S. H. Burstein, C. A. Audette, S. A. Doyle, K. Hull, S. A. Hunter, and V. Latham. Antagonism to the actions of platelet activating factor by a nonpsychoactive cannabinoid. J. Pharmacol. Exp. Ther. 251(2):531–535 (1989).

    PubMed  CAS  Google Scholar 

  109. 109.

    S. Burstein, S. A. Hunter, K. Ozman, and L. Renzulli. Prostaglandins and cannabis—XIII. Cannabinoid-induced elevation of lipoxygenase products in mouse peritoneal macrophages. Biochem. Pharmacol. 33(16):2653–2656 (1984).

    PubMed  CAS  Google Scholar 

  110. 110.

    S. Burstein. Cannabinoid induced changes in eicosanoid synthesis by mouse peritoneal cells. Adv. Exp. Med. Biol. 288:107–112 (1991).

    PubMed  CAS  Google Scholar 

  111. 111.

    R. Succar, V. A. Mitchell, and C. W. Vaughan. Actions of N-arachidonyl-glycine in a rat inflammatory pain model. Mol. Pain. 3(1):24 (2007).

    PubMed  Google Scholar 

  112. 112.

    L. A. Vuong, V. A. Mitchell, and C. W. Vaughan. Actions of N-arachidonyl-glycine in a rat neuropathic pain model. Neuropharmacology. 54(1):189–193 (2008).

    PubMed  CAS  Google Scholar 

  113. 113.

    S. Burstein, and R. Salmonsen. Acylamido analogs of endocannabinoids selectively inhibit cancer cell proliferation. Bioorg. Med. Chem. 16(22):9644–9651 (2008).

    PubMed  CAS  Google Scholar 

  114. 114.

    M. L. Barrett, D. Gordon, and F. J. Evans. Isolation from Cannabis sativa L. of cannflavin—a novel inhibitor of prostaglandin production. Biochem. Pharmacol. 34(11):2019–2024 (1985).

    PubMed  CAS  Google Scholar 

  115. 115.

    M. L. Barrett, A. M. Scutt, and F. J. Evans. Cannflavin A and B, prenylated flavones from Cannabis sativa L. Experientia. 42(4):452–453 (1986).

    PubMed  CAS  Google Scholar 

  116. 116.

    R. D. Sofia, S. D. Nalepa, H. B. Vassar, and L. C. Knobloch. Comparative anti-phlogistic activity of delta 9-tetrahydrocannabinol, hydrocortisone and aspirin in various rat paw edema models. Life Sci. 15(2):251–260 (1974).

    PubMed  CAS  Google Scholar 

  117. 117.

    S. Burstein, C. Varanelli, and L. T. Slade. Prostaglandins and cannabis—III. Inhibition of biosynthesis by essential oil components of marihuana. Biochem. Pharmacol. 24(9):1053–1054 (1975).

    PubMed  CAS  Google Scholar 

  118. 118.

    R. K. Razdan. Structure-activity relationships in cannabinoids. Pharmacol. Rev. 38(2):75–149 (1986).

    PubMed  CAS  Google Scholar 

  119. 119.

    S. Hougee, A. Sanders, J. Faber, Y. M. Graus, W. B. van den Berg, J. Garssen, H. F. Smit, and M. A. Hoijer. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem. Pharmacol. 69(2):241–248 (2005).

    PubMed  CAS  Google Scholar 

  120. 120.

    A. M. Lehane, and K. J. Saliba. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res. Notes. 1:26 (2008).

    PubMed  Google Scholar 

  121. 121.

    P. Ashokkumar, and G. Sudhandiran. Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed. Pharmacother. 62(9):590–597 (2008).

    PubMed  CAS  Google Scholar 

  122. 122.

    L. Hui-Lin. The origin and use of cannabis in Eastern Asia. In V. Rubin (ed.), Cannabis and Culture, Mouton, The Hague, 1975.

    Google Scholar 

Download references

Acknowledgments

This publication was made possible by grants DA17969, DA13691, and AI 056362 from the National Institutes of Health, Bethesda, MD. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumner H. Burstein.

Additional information

Guest Editor: Rao Rapaka

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burstein, S.H., Zurier, R.B. Cannabinoids, Endocannabinoids, and Related Analogs in Inflammation. AAPS J 11, 109 (2009). https://doi.org/10.1208/s12248-009-9084-5

Download citation

Key words

  • ajulemic acid
  • cannabinoid
  • elmiric acid
  • endocannabinoid
  • inflammation