Skip to main content

Advertisement

Log in

Delivery of Macromolecules Using Arginine-Rich Cell-Penetrating Peptides: Ways to Overcome Endosomal Entrapment

  • Emerging Drug Delivery Technologies
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Arginine-rich cell-penetrating peptides (AR-CPPs) are very promising tools for the delivery of therapeutic macromolecules such as peptides, proteins, and nucleic acids. These peptides allow efficient internalization of the linked cargos intracellularly through the endocytic pathway. However, when linked to bulky cargos, entrapment in the endocytic vesicles is a major limitation to the application of these peptides in cytosolic delivery. Attachment of a compatible endosomal escape device is, therefore, necessary to allow cytosolic delivery of the peptide-attached cargo. This review presents different endosomal escape devices currently in application in combination with AR-CPPs. Applications of fusogenic lipids, membrane-disruptive peptides, membrane-disruptive polymers, lysosomotropic agents, and photochemical internalization to enhance the cytosolic delivery of AR-CPPs-attached cargos are presented. The properties of each system and its mechanism of action for the enhancement of endosomal escape are discussed, together with its applications for the delivery of different macromolecules in vitro and, if applicable, in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Belting, S. Sandgren, and A. Wittrup. Nuclear delivery of macromolecules: barriers and carriers. Adv. Drug Deliv. Rev. 57(4):505–527 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. H. Kamiya, H. Akita, and H. Harashima. Pharmacokinetic and pharmacodynamic considerations in gene therapy. Drug Discov. Today. 8(21):990–996 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. M. Mae, and U. Langel. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr. Opin. Pharmacol. 6(5):509–514 (2006).

    Article  PubMed  Google Scholar 

  4. I. A. Khalil, K. Kogure, S. Futaki, and H. Harashima. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem. 281(6):3544–3551 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. H. Brooks, B. Lebleu, and E. Vives. Tat peptide-mediated cellular delivery: back to basics. Adv. Drug Deliv. Rev. 57(4):559–577 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. S. Futaki. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv. Drug Deliv. Rev. 57(4):547–558 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. V. P. Torchilin. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv. Drug Deliv. Rev. 60(4–5):548–558 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. I. Nakase, T. Takeuchi, G. Tanaka, and S. Futaki. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv. Drug Deliv. Rev. 60(4–5):598–607 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. A. D. Frankel, and C. O. Pabo. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55(6):1189–1193 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269(14):10444–10450 (1994).

    PubMed  CAS  Google Scholar 

  11. S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276(8):5836–5840 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277(4):2437–2443 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278(1):585–590 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. S. M. Fuchs, and R. T. Raines. Pathway for polyarginine entry into mammalian cells. Biochemistry. 43(9):2438–2444 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. S. Futaki. Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms. Biopolymers. 84(3):241–249 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. F. Duchardt, M. Fotin-Mleczek, H. Schwarz, R. Fischer, and R. Brock. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic. 8(7):848–866 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M. Takehashi, S. Tanaka, K. Ueda, J. C. Simpson, A. T. Jones, Y. Sugiura, and S. Futaki. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10(6):1011–1022 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. J. S. Wadia, R. V. Stan, and S. F. Dowdy. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10(3):310–315 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. I. Nakase, A. Tadokoro, N. Kawabata, T. Takeuchi, H. Katoh, K. Hiramoto, M. Negishi, M. Nomizu, Y. Sugiura, and S. Futaki. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry. 46(2):492–501 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. K. Melikov, and L. V. Chernomordik. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Cell. Mol. Life Sci. 62(23):2739–2749 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. P. A. Wender, W. C. Galliher, E. A. Goun, L. R. Jones, and T. H. Pillow. The design of guanidinium-rich transporters and their internalization mechanisms. Adv. Drug Deliv. Rev. 60(4–5):452–472 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. S. Al-Taei, N. A. Penning, J. C. Simpson, S. Futaki, T. Takeuchi, I. Nakase, and A. T. Jones. Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjug. Chem. 17(1):90–100 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. T. B. Potocky, A. K. Menon, and S. H. Gellman. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278(50):50188–50194 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. R. Fischer, K. Kohler, M. Fotin-Mleczek, and R. Brock. A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J. Biol. Chem. 279(13):12625–12635 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, and P. A. Wender. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126(31):9506–9507 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. J. B. Rothbard, T. C. Jessop, and P. A. Wender. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv. Drug Deliv. Rev. 57(4):495–504 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. N. Sakai, T. Takeuchi, S. Futaki, and S. Matile. Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes. Chembiochem. 6(1):114–122 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. T. Hitz, R. Iten, J. Gardiner, K. Namoto, P. Walde, and D. Seebach. Interaction of alpha-and beta-oligoarginine-acids and amides with anionic lipid vesicles: a mechanistic and thermodynamic study. Biochemistry. 45(18):5817–5829 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. J. Bjorklund, H. Biverstahl, A. Graslund, L. Maler, and P. Brzezinski. Real-time transmembrane translocation of penetratin driven by light-generated proton pumping. Biophys. J. 91(4):L29–L31 (2006).

    Article  PubMed  Google Scholar 

  30. M. Magzoub, A. Pramanik, and A. Graslund. Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry. 44(45):14890–14897 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. G. Ruan, A. Agrawal, A. I. Marcus, and S. Nie. Imaging and tracking of Tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc. 129(47):14759–14766 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. D. S. Youngblood, S. A. Hatlevig, J. N. Hassinger, P. L. Iversen, and H. M. Moulton. Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells. Bioconjug. Chem. 18(1):50–60 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. R. E. Vandenbroucke, S. C. De Smedt, J. Demeester, and N. N. Sanders. Cellular entry pathway and gene transfer capacity of TAT-modified lipoplexes. Biochim. Biophys. Acta. 1768(3):571–579 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. J. R. Maiolo, M. Ferrer, and E. A. Ottinger. Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim. Biophys. Acta. 1712(2):161–172 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. R. Fischer, D. Bachle, M. Fotin-Mleczek, G. Jung, H. Kalbacher, and R. Brock. A targeted protease substrate for a quantitative determination of protease activities in the endolysosomal pathway. Chembiochem. 7(9):1428–1434 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. J. Rinne, B. Albarran, J. Jylhava, T. O. Ihalainen, P. Kankaanpaa, V. P. Hytonen, P. S. Stayton, M. S. Kulomaa, and M. Vihinen-Ranta. Internalization of novel non-viral vector TAT-streptavidin into human cells. BMC Biotechnol. 7:1 (2007).

    Article  PubMed  Google Scholar 

  37. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA. 84(21):7413–7417 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. H. Farhood, N. Serbina, and L. Huang. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta. 1235(2):289–295 (1995).

    Article  PubMed  Google Scholar 

  39. X. Zhou, and L. Huang. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta. 1189(2):195–203 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. I. M. Hafez, and P. R. Cullis. Roles of lipid polymorphism in intracellular delivery. Adv. Drug Deliv. Rev. 47(2–3):139–148 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. L. Hyndman, J. L. Lemoine, L. Huang, D. J. Porteous, A. C. Boyd, and X. Nan. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J. Control. Release. 99(3):435–444 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. K. Kogure, H. Akita, and H. Harashima. Multifunctional envelope-type nano device for non-viral gene delivery: concept and application of Programmed Packaging. J. Control. Release. 122(3):246–251 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. K. Kogure, H. Akita, Y. Yamada, and H. Harashima. Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliv. Rev. 60(4–5):559–571 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. K. Kogure, R. Moriguchi, K. Sasaki, M. Ueno, S. Futaki, and H. Harashima. Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J. Control. Release. 98(2):317–323 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. I. A. Khalil, K. Kogure, S. Futaki, S. Hama, H. Akita, M. Ueno, H. Kishida, M. Kudoh, Y. Mishina, K. Kataoka, M. Yamada, and H. Harashima. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene. Ther. 14(8):682–689 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. R. Moriguchi, K. Kogure, H. Akita, S. Futaki, M. Miyagishi, K. Taira, and H. Harashima. A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids. Int. J. Pharm. 301(1–2):277–285 (2005).

    Article  PubMed  CAS  Google Scholar 

  47. R. Suzuki, Y. Yamada, and H. Harashima. Development of small, homogeneous pDNA particles condensed with mono-cationic detergents and encapsulated in a multifunctional envelope-type nano device. Biol. Pharm. Bull. 31(6):1237–1243 (2008).

    Article  PubMed  CAS  Google Scholar 

  48. Y. Nakamura, K. Kogure, Y. Yamada, S. Futaki, and H. Harashima. Significant and prolonged antisense effect of a multifunctional envelope-type nano device encapsulating antisense oligodeoxynucleotide. J. Pharm. Pharmacol. 58(4):431–437 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Y. Nakamura, K. Kogure, S. Futaki, and H. Harashima. Octaarginine-modified multifunctional envelope-type nano device for siRNA. J. Control. Release. 119(3):360–367 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. R. Suzuki, Y. Yamada, and H. Harashima. Efficient cytoplasmic protein delivery by means of a multifunctional envelope-type nano device. Biol. Pharm. Bull. 30(4):758–762 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. Y. Yamada, H. Akita, H. Kamiya, K. Kogure, T. Yamamoto, Y. Shinohara, K. Yamashita, H. Kobayashi, H. Kikuchi, and H. Harashima. MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta. 1778(2):423–432 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. T. Nakamura, R. Moriguchi, K. Kogure, N. Shastri, and H. Harashima. Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes. Mol. Ther. 16(8):1507–1514 (2008).

    Article  PubMed  CAS  Google Scholar 

  53. D. Mudhakir, H. Akita, E. Tan, and H. Harashima. A novel IRQ ligand-modified nano-carrier targeted to a unique pathway of caveolar endocytic pathway. J. Control. Release. 125(2):164–173 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. J. W. Holland, C. Hui, P. R. Cullis, and T. D. Madden. Poly(ethylene glycol)-lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry. 35(8):2618–2624 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. R. M. Sawant, J. P. Hurley, S. Salmaso, A. Kale, E. Tolcheva, T. S. Levchenko, and V. P. Torchilin. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem. 17(4):943–949 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. A. A. Kale, and V. P. Torchilin. “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J. Liposome. Res. 17(3–4):197–203 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. A. A. Kale, and V. P. Torchilin. Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. J. Drug Target. 15(7–8):538–545 (2007).

    Article  PubMed  CAS  Google Scholar 

  58. A. El-Sayed, I. A. Khalil, K. Kogure, S. Futaki, and H. Harashima. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J. Biol. Chem. 283(34):23450–23461 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. P. Meers, J. Bentz, D. Alford, S. Nir, D. Papahadjopoulos, and K. Hong. Synexin enhances the aggregation rate but not the fusion rate of liposomes. Biochemistry. 27(12):4430–4439 (1988).

    Article  PubMed  CAS  Google Scholar 

  60. T. Maeda, K. Kawasaki, and S. Ohnishi. Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc. Natl. Acad. Sci. USA. 78(7):4133–4137 (1981).

    Article  PubMed  CAS  Google Scholar 

  61. P. A. Bullough, F. M. Hughson, J. J. Skehel, and D. C. Wiley. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 371(6492):37–43 (1994).

    Article  PubMed  CAS  Google Scholar 

  62. I. M. Kaplan, J. S. Wadia, and S. F. Dowdy. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release. 102(1):247–253 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. S. El-Andaloussi, H. J. Johansson, P. Lundberg, and U. Langel. Induction of splice correction by cell-penetrating peptide nucleic acids. J. Gene Med. 8(10):1262–1273 (2006).

    Article  PubMed  CAS  Google Scholar 

  64. P. Lundberg, S. El-Andaloussi, T. Sutlu, H. Johansson, and U. Langel. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. Faseb J. 21(11):2664–2671 (2007).

    Article  PubMed  CAS  Google Scholar 

  65. C. Plank, B. Oberhauser, K. Mechtler, C. Koch, and E. Wagner. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem. 269(17):12918–12924 (1994).

    PubMed  CAS  Google Scholar 

  66. E. K. Esbjorner, K. Oglecka, P. Lincoln, A. Graslund, and B. Norden. Membrane binding of pH-sensitive influenza fusion peptides. Positioning, configuration, and induced leakage in a lipid vesicle model. Biochemistry. 46(47):13490–13504 (2007).

    Article  PubMed  Google Scholar 

  67. T. Sugita, T. Yoshikawa, Y. Mukai, N. Yamanada, S. Imai, K. Nagano, Y. Yoshida, H. Shibata, Y. Yoshioka, S. Nakagawa, H. Kamada, S. Tsunoda, and Y. Tsutsumi. Comparative study on transduction and toxicity of protein transduction domains. Br. J. Pharmacol. 153(6):1143–1152 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. T. Sugita, T. Yoshikawa, Y. Mukai, N. Yamanada, S. Imai, K. Nagano, Y. Yoshida, H. Shibata, Y. Yoshioka, S. Nakagawa, H. Kamada, S. Tsunoda, and Y. Tsutsumi. Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Biochem. Biophys. Res. Commun. 363(4):1027–1032 (2007).

    Article  PubMed  CAS  Google Scholar 

  69. T. Yoshikawa, T. Sugita, Y. Mukai, N. Yamanada, K. Nagano, H. Nabeshi, Y. Yoshioka, S. Nakagawa, Y. Abe, H. Kamada, S. Tsunoda, and Y. Tsutsumi. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus. J. Mol. Biol. 380(5):777–782 (2008).

    Article  PubMed  CAS  Google Scholar 

  70. H. Michiue, K. Tomizawa, F. Y. Wei, M. Matsushita, Y. F. Lu, T. Ichikawa, T. Tamiya, I. Date, and H. Matsui. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J. Biol. Chem. 280(9):8285–8289 (2005).

    Article  PubMed  CAS  Google Scholar 

  71. N. Ohmori, T. Niidome, A. Wada, T. Hirayama, T. Hatakeyama, and H. Aoyagi. The enhancing effect of anionic alpha-helical peptide on cationic peptide-mediating transfection systems. Biochem. Biophys. Res. Commun. 235(3):726–729 (1997).

    Article  PubMed  CAS  Google Scholar 

  72. S. L. Lo, and S. Wang. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials. 29(15):2408–2414 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. P. Midoux, and M. Monsigny. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10(3):406–411 (1999).

    Article  PubMed  CAS  Google Scholar 

  74. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA. 92(16):7297–7301 (1995).

    Article  PubMed  CAS  Google Scholar 

  75. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4(7):581–593 (2005).

    Article  PubMed  CAS  Google Scholar 

  76. C. Rudolph, C. Plank, J. Lausier, U. Schillinger, R. H. Muller, and J. Rosenecker. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278(13):11411–11418 (2003).

    Article  PubMed  CAS  Google Scholar 

  77. R. Q. Huang, Y. Y. Pei, and C. Jiang. Enhanced gene transfer into brain capillary endothelial cells using Antp-modified DNA-loaded nanoparticles. J. Biomed. Sci. 14(5):595–605 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. E. Kleemann, M. Neu, N. Jekel, L. Fink, T. Schmehl, T. Gessler, W. Seeger, and T. Kissel. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG–PEI. J. Control. Release. 109(1–3):299–316 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. S. R. Sirsi, R. C. Schray, X. Guan, J. H. Williams, M. L. Erney, and G. J. Lutz. Functionalized PEG–PEI copolymers complexed to exon-skipping oligonucleotides improve dystrophin expression in mdx mice. Hum. Gene Ther. 19(8):795–806 (2008).

    Article  PubMed  CAS  Google Scholar 

  80. F. Alexis, S. L. Lo, and S. Wang. Covalent attachment of low molecular weight Poly(ethylene imine) improves Tat peptide mediated gene delivery. Adv. Mater. 18(16):2174–2178 (2006).

    Article  CAS  Google Scholar 

  81. J. S. Suk, J. Suh, K. Choy, S. K. Lai, J. Fu, and J. Hanes. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 27(29):5143–5150 (2006).

    Article  PubMed  CAS  Google Scholar 

  82. S. R. Doyle, and C. K. Chan. Differential intracellular distribution of DNA complexed with polyethylenimine (PEI) and PEI-polyarginine PTD influences exogenous gene expression within live COS-7 cells. Genet. Vaccines Ther. 5:11 (2007).

    Article  PubMed  Google Scholar 

  83. P. Erbacher, A. C. Roche, M. Monsigny, and P. Midoux. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Exp. Cell. Res. 225(1):186–194 (1996).

    Article  PubMed  CAS  Google Scholar 

  84. K. Ciftci, and R. J. Levy. Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. Int. J. Pharm. 218(1–2):81–92 (2001).

    Article  PubMed  CAS  Google Scholar 

  85. M. S. Wadhwa, D. L. Knoell, A. P. Young, and K. G. Rice. Targeted gene delivery with a low molecular weight glycopeptide carrier. Bioconjug. Chem. 6(3):283–291 (1995).

    Article  PubMed  CAS  Google Scholar 

  86. E. Jeon, H. D. Kim, and J. S. Kim. Pluronic-grafted poly-(L)-lysine as a new synthetic gene carrier. J. Biomed. Mater. Res. A. 66(4):854–859 (2003).

    Article  PubMed  Google Scholar 

  87. T. Katav, L. Liu, T. Traitel, R. Goldbart, M. Wolfson, and J. Kost. Modified pectin-based carrier for gene delivery: cellular barriers in gene delivery course. J. Control. Release. 130(20):183–191 (2008).

    Article  PubMed  CAS  Google Scholar 

  88. N. J. Caron, S. P. Quenneville, and J. P. Tremblay. Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins. Biochem. Biophys. Res. Commun. 319(1):12–20 (2004).

    Article  PubMed  CAS  Google Scholar 

  89. T. Shiraishi, S. Pankratova, and P. E. Nielsen. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides. Chem. Biol. 12(8):923–929 (2005).

    Article  PubMed  CAS  Google Scholar 

  90. T. Shiraishi, and P. E. Nielsen. Enhanced delivery of cell-penetrating peptide–peptide nucleic acid conjugates by endosomal disruption. Nat. Protoc. 1(2):633–636 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. S. Abes, J. J. Turner, G. D. Ivanova, D. Owen, D. Williams, A. Arzumanov, P. Clair, M. J. Gait, and B. Lebleu. Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res. 35(13):4495–4502 (2007).

    Article  PubMed  CAS  Google Scholar 

  92. A. Hogset, L. Prasmickaite, P. K. Selbo, M. Hellum, B. O. Engesaeter, A. Bonsted, and K. Berg. Photochemical internalisation in drug and gene delivery. Adv. Drug Deliv. Rev. 56(1):95–115 (2004).

    Article  PubMed  CAS  Google Scholar 

  93. M. Matsushita, H. Noguchi, Y. F. Lu, K. Tomizawa, H. Michiue, S. T. Li, K. Hirose, S. Bonner-Weir, and H. Matsui. Photo-acceleration of protein release from endosome in the protein transduction system. FEBS Lett. 572(1–3):221–226 (2004).

    Article  PubMed  CAS  Google Scholar 

  94. T. Shiraishi, and P. E. Nielsen. Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett. 580(5):1451–1456 (2006).

    Article  PubMed  CAS  Google Scholar 

  95. M. Folini, R. Bandiera, E. Millo, P. Gandellini, G. Sozzi, P. Gasparini, N. Longoni, M. Binda, M. G. Daidone, K. Berg, and N. Zaffaroni. Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell. Prolif. 40(6):905–920 (2007).

    Article  PubMed  CAS  Google Scholar 

  96. K. Berg, A. Hogset, L. Prasmickaite, A. Weyergang, A. Bonsted, A. Dietze, P. J. Lou, S. Bown, O. J. Norum, H. M. T. Mollergard, and P. K. Selbo. Photochemical internalization (PCI): a novel technology for activation of endocytosed therapeutic agents. Med. Laser Appl. 21(4):239–250 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors’ research was supported, in part, by Grants-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by Grants-in-Aid for Scientific Research on Priority Areas from the Japan Society for the Promotion of Science. The authors thank Dr. James L. McDonald for his helpful advice in writing the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyoshi Harashima.

Additional information

Guest Editor: Dexi Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, A., Futaki, S. & Harashima, H. Delivery of Macromolecules Using Arginine-Rich Cell-Penetrating Peptides: Ways to Overcome Endosomal Entrapment. AAPS J 11, 13–22 (2009). https://doi.org/10.1208/s12248-008-9071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9071-2

Key words

Navigation