Skip to main content
Log in

Method to Screen Substrates of Apical Sodium-Dependent Bile Acid Transporter

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Human apical sodium-dependent bile acid transporter (hASBT) is a potential prodrug target under study. Development of prodrugs that target hASBT may yield compounds with low solubility and/or susceptibility to hydrolysis. A transport uptake method is needed that increases compound solubility and avoids NaOH for cell lysis during postexperimental cell sample preparation. The overall goal was to develop an assay method to screen for hASBT uptake of novel compounds. The first objective was to determine the maximum cosolvent concentrations that are compatible with an hASBT active transport assay. The second objective was to develop a NaOH-free cell lysis method to process cell samples from these uptake studies. The following cosolvents were studied: dimethylacetamide (DMAC), dimethylformamide (DMF), dimethylsulfoxide (DMSO), ethanol, methanol, polyethylene glycol-400, propylene glycol, and dioxane. Initial studies included taurocholate flux studies across hASBT-Madin–Darby canine kidney monolayers using up to 10% cosolvent, as well as cytotoxicity studies. The effect of selected cosolvent concentrations on the hASBT Michaelis–Menten kinetic parameters was evaluated. Additionally, two acetonitrile-based cell lysis methods that do not use NaOH were evaluated in terms of percent sample recovery and hASBT kinetic parameters. Results showed that the maximum permissible cosolvent concentrations for hASBT uptake studies, without compromising assay results or causing cytotoxicity, are 1% DMAC, 1% DMF, 2.5% DMSO, 2.5% methanol, and 2.5% ethanol. Additionally, both NaOH-free, acetonitrile-based cell lysis methods provided similar recovery and hASBT results, compared to NaOH method. Hence, an assay method was developed to screen for active transport, allowing for cosolvents that can solubilize compounds and avoid NaOH sample treatment, which can otherwise degrade compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMAC:

dimethylacetamide

DMF:

dimethylformamide

DMSO:

dimethylsulfoxide

PEG-400:

polyethylene glycol-400

PG:

polypropylene glycol

References

  1. A. Balakrishnan, and J. E. Polli. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol. Pharm. 3:223–230 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. A. Balakrishnan, S. A. Wring, A. Coop, and J. E. Polli. Influence of charge and steric bulk in the C-24 region on the interaction of bile acids with human apical sodium-dependent bile acid transporter. Mol. Pharm. 3:282–292 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. A. Balakrishnan, D. J. Sussman, and J. E. Polli. Development of stably transfected monolayer over expressing the human apical sodium-dependent bile acid transporter (hASBT). Pharm. Res. 22:1269–1280 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. S. Tolle-Sander, K. A. Lentz, D. Y. Maeda, A. Coop, and J. E. Polli. Increased acyclovir oral bioavailability via a bile acid conjugate. Mol. Pharm. 1:40–48 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. A. Balakrishnan, N. Hussainzada, P. Gonzalez, M. Bermejo, P. W. Swaan, and J. E. Polli. Bias in estimation of transporter kinetic parameters from over-expression systems: interplay of transporter expression level and substrate affinity. J. Pharmacol. Exp. Ther. 320:1–12 (2007).

    Google Scholar 

  6. P. Saha, and J.H. Kou. Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers. Eur. J. Pharm. Biopharm. 50:403–411 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. K. Katneni, S. A. Charman, and C. J. Porter. Permeability assessment of poorly water-soluble compounds under solubilizing conditions: the reciprocal permeability approach. J. Pharm. Sci. 95:2170–2185 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, and H. Tokuda. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 10:195–204 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. A. A. Gurtovenko, and J. Anwar. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem B. 111:10453–10460 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. B. D. Rege, J. P. Kao, and J. E. Polli. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur. J. Pharm. Sci. 16:237–246 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. D. B. Goldstein. The effects of drugs on membrane fluidity. Annu. Rev. Pharmacol. 24:43–64 (1984).

    Article  CAS  Google Scholar 

  12. B. J. Aungst, N. H. Nguyen, J. P. Bulgarelli, and K. Oates-Lenz. The influence of donor and reservoir additives on Caco-2 permeability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Pharm. Res. 17:1175–1180 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. G. Da Violante, N. Zerrouk, I. Richard, G. Provot, J. C. Chaumeil, and P. Arnaud. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol. Pharm. Bull. 25:1600–1603 (2002).

    Article  PubMed  Google Scholar 

  14. G. E. Flaten, K. Luthman, T. Vasskog, and M. Brandl. Drug permeability across a phospholipid vesicle-based barrier 4. The effect of tensides, co-solvents and pH changes on barrier integrity and on drug permeability. Eur. J. Pharm. Sci. 34:173–180 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Takahashi, H. Kondo, T. Yasuda, T. Watanabe, S. I. Kobavashi, and S. Yokohama. Common solubilizers to estimate the Caco-2 transport of poorly water-soluble drugs. Int. J. Pharm. 246:85–94 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. B. D. Rege, L. X. Yu, A. S. Hussain, and J. E. Polli. Effect of common excipients on Caco-2 transport of low-permeability drugs. J. Pharm. Sci. 90:1776–1786 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. G. E. Flaten, H. Bunjes, K. Luthman, and M. Brandl. Drug permeability across a phospholipid vesicle based barrier. 2. Characterization of barrier structure, storage stability and stability towards pH changes. Eur. J. Pharm. Sci. 28:336–343 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. M. M. Nerurkar, N. F. Ho, P. S. Burton, T. J. Vidmar, and R. T. Borchardt. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J. Pharm. Sci. 86:813–821 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. J. C. Mathies, and M. A. Austin. Modified acetonitrile protein-precipitation method of sample preparation for drug assay by liquid chromatography. Clin. Chem. 26:1760 (1980).

    PubMed  CAS  Google Scholar 

  20. S. Harlfinger, C. Fork, A. Lazar, E. Schömig, and D. Gründemann. Are organic cation transporters capable of transporting prostaglandins? Naunyn Schmiedebergs Arch. Pharmacol. 372:125–130 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was support in part by National Institutes of Health (grant DK67530). We thank Vidula Kolhatkar for the synthesis of inhibitor A. WinNonlin software was kindly donated by Pharsight Corp. (Mountain View, CA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Polli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rais, R., Gonzalez, P.M., Zheng, X. et al. Method to Screen Substrates of Apical Sodium-Dependent Bile Acid Transporter. AAPS J 10, 596–605 (2008). https://doi.org/10.1208/s12248-008-9069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9069-9

Key words

Navigation