Skip to main content
Log in

Determination of figures of merit for near-infrared and raman spectrometry by net analyte signal analysis for a 4-component solid dosage system

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Process analytical technology has elevated the role of sensors in pharmaceutical manufacturing. Often the ideal technology must be selected from many suitable candidates based on limited data. Net analyte signal (NAS) theory provides an effective platform for method characterization based on multivariate figures of merit (FOM). The objective of this work was to demonstrate that these tools can be used to characterize the performance of 2 dissimilar analyzers based on different underlying spectroscopic principles for the analysis of pharmaceutical compacts. A fully balanced, 4-constituent mixture design composed of anhydrous theophylline, lactose monohydrate, microcrystalline cellulose, and starch was generated; it consisted of 29 design points. Six 13-mm tablets were produced from each mixture at 5 compaction levels and were analyzed by near-infrared and Raman spectroscopy. Partial least squares regression and NAS analyses were performed for each component, which allowed for the computation of FOM. Based on the calibration error statistics, both instruments were capable of accurately modeling all constituents. The results of this work indicate that these statistical tools are a suitable platform for comparing dissimilar analyzers and illustrate the complexity of technology selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bugay DE, Brittain HG. Raman spectroscopy. In: Brittain H, ed.Spectroscopy of Pharmaceutical Solids. vol. 160. New York, NY: Taylor & Francis; 2006:271–312.

    Google Scholar 

  2. Cogdill RP, Drennen JK. Near-infrared spectroscopy. In: Brittain H, ed.Spectroscopy of Pharmaceutical Solids. vol. 160. New York, NY: Taylor & Francis; 2006:313–412.

    Google Scholar 

  3. Afseth NK, Segtnan VH, Marquardt BJ, Wold JP. Raman and near-infrared spectroscopy for quantification of fat composition in a complex food model system.Appl Spectrosc. 2005;59:1324–1332.

    Article  PubMed  CAS  Google Scholar 

  4. Furukawa T, Masahiro W, Siesler HW, Ozaki Y. Discrimination of various poly(propylene) copolymers and prediction of their ethylene content by near-infrared and Raman spectroscopy in combination with chemometric methods.J Appl Polym Sci. 2003;87:616–625.

    Article  CAS  Google Scholar 

  5. Nordon A, Meunier C, McGill CA, Littlejohn D. Comparison of calibration methods for the monitoring of a fluorobenzene batch reaction using low-field 19F NMR, 1H NMR, NIR, and Raman spectrometries.Appl Spectrosc. 2002;56:515–520.

    Article  CAS  Google Scholar 

  6. Nordon A, Mills A, Burn RT, Cusick FM, Littlejohn D. Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits.Anal Chim Acta. 2005;548:148–158.

    Article  CAS  Google Scholar 

  7. Qiao Y, van Kempen TATG. Comparison of Raman, mid, and near infrared spectroscopy for predicting the amino acid content in animal meals.J Anim Sci. 2004;82:2596–2600.

    PubMed  CAS  Google Scholar 

  8. Chung H, Ku M-S. Comparison of near-infrared, infrared, and Raman spectroscopy for the analysis of heavily petroleum products.Appl Spectrosc. 2000;54:239–245.

    Article  CAS  Google Scholar 

  9. Ku M-S, Chung H. Comparison of near-infrared and Raman spectroscopy for the determination of chemical and physical properties of naphtha.Appl Spectrosc. 1999;53:557–564.

    Article  CAS  Google Scholar 

  10. Lorber A, Faber K, Kowalski BR. Net analyte signal calculation in multivariate calibration.Anal Chem. 1997;69:1620–1626.

    Article  CAS  Google Scholar 

  11. Lorber A. Error propagation and figures of merit for quantification by solving matrix equations.Anal Chem. 1986;58:1167–1172.

    Article  CAS  Google Scholar 

  12. Brown CD. Discordance between net analyte signal theory and practical multivariate calibration.Anal Chem. 2004;76:4364–4373.

    Article  PubMed  CAS  Google Scholar 

  13. Morgan DR. Spectral absorption pattern detection and estimation, I: analytical techniques.Appl Spectrosc. 1977;31:404–415.

    Article  CAS  Google Scholar 

  14. Olivieri AC, Faber NM, Ferre J, Boque R, Kalivas JH, Mark H. Uncertainty estimation and figures of merit for multivariate calibration.Pure Appl Chem. 2006;78:633–661.

    Article  CAS  Google Scholar 

  15. Haaland DM. Classical versus inverse least squares methods in quantitative spectral analyses.Spectroscopy. 1987;2:56–57.

    CAS  Google Scholar 

  16. Boelens HF, Kok WT, de Noord OE, Smilde AK. Performance optimization of spectroscopic process analyzers.Anal Chem. 2004;76:2656–2663.

    Article  PubMed  CAS  Google Scholar 

  17. Xu L, Schechter I. A calibration method free of optimum factor number selection for automated multivariate analysis. Experimental and theoretical study.Anal Chem. 1997;69:3722–3730.

    Article  CAS  Google Scholar 

  18. Ferre J, Brown SD, Rius FX. Improved calculation of the net analyte signal in inverse multivariate calibration.J Chemom. 2001;15:537–553.

    Article  CAS  Google Scholar 

  19. Bro R, Andersen CM. Theory of net analyte signal vectors in inverse regression.J Chemom. 2003;17:646–652.

    Article  CAS  Google Scholar 

  20. Martens H, Naes T.Multivariate Calibration. New York, NY: John Wiley and Sons; 1989.

    Google Scholar 

  21. Xu L, Schechter I. Wavelength selection for simultaneous spectroscopic analysis. Experimental and theoretical study.Anal Chem. 1996;68:2392–2400.

    Article  CAS  Google Scholar 

  22. Goicoechea HC, Olivieri AC. Chemometric assisted simultaneous spectrophotometric determination of four-component nasal solutions with a reduced number of calibration samples.Anal Chem Acta. 2002;453:289–300.

    Article  CAS  Google Scholar 

  23. Braga JWB, Poppi RJ. Figures of merit for the determination of the polymorphic purity of carbamazepine by infrared spectroscopy and multivariate calibration.J Pharm Sci. 2004;93:2124–2134.

    Article  PubMed  CAS  Google Scholar 

  24. Geladi P, Kowalski BR. Partial least-squares regression: a tutorial.Anal Chem Acta. 1986;185:1–17.

    Article  CAS  Google Scholar 

  25. De Jong S. SIMPLS: an alternative approach to partial least squares regression.Chemom Intell Lab Syst. 1993;18:251–263.

    Article  Google Scholar 

  26. ICH. ICH harmonised tripartite guideline: validation of analytical procedures: text and methodology.Fed Regist. 1997;62:27463–27467.

    Google Scholar 

  27. Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses, 1: relation to other quantitative calibration methods and the extraction of qualitative information.Anal Chem. 1988;60:1193–1202.

    Article  CAS  Google Scholar 

  28. Long GL, Winefordner JD. Limit of detection: a closer look at the IUPAC definition.Anal Chem. 1983;55:712A-724A.

    Article  CAS  Google Scholar 

  29. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures.Anal Chem. 1964;36:1627–1639.

    Article  CAS  Google Scholar 

  30. Marbach R. On Wiener filtering and the physics behind statistical modeling.J Biomed Opt. 2002;7:130–147.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl A. Anderson.

Additional information

Themed Issue: Process Analytical Technology

Guest Editor — Ajaz Hussain

Published: November 9, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Short, S.M., Cogdill, R.P. & Anderson, C.A. Determination of figures of merit for near-infrared and raman spectrometry by net analyte signal analysis for a 4-component solid dosage system. AAPS PharmSciTech 8, 96 (2007). https://doi.org/10.1208/pt0804096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt0804096

Keywords

Navigation