Skip to main content
Log in

Transdermal therapeutic system of carvedilol: Effect of hydrophilic and hydrophobic matrix on in vitro and in vivo characteristics

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research was to develop a matrix-type transdermal therapeutic system containing carvedilol with different ratios of hydrophilic and hydrophobic polymeric combinations by the solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy and differential scanning calorimetry. The results suggested no physicochemical incompatibility between the drug and the polymers. In vitro permeation studies were performed by using Franz diffusion cells. The results followed Higuchi kinetics (r=0.9953−0.9979), and the mechanism of release was diffusion mediated. Based on physicochemical and in vitro skin permeation studies, patches coded as F3 (ethyl cellulose: polyvinylpyr-rolidone, 7.5∶2.5) and F6 (Eudragit RL:Eudragit RS, 8∶2) were chosen for further in vivo studies. The bioavailability studies in rats indicated that the carvedilol transdermal patches provided steady-state plasma concentrations with minimal fluctuations and improved bioavailability of 71% (for F3) and 62% (for F6) in comparison with oral administration. The antihypertensive activity of the patches in comparison with that of oral carvedilol was studied using methyl prednisolone acetate—induced hypertensive rats. It was observed that both the patches significantly controlled hypertension from the first hour (P<.05). The developed transdermal patches increase the efficacy of carvedilol for the therapy of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mollendorff EV, Reiff K, Neugebauer G. Pharmacokinetics and bioavailability of carvedilol, a vasodilating beta-blocker.Eur J Clinical Pharm. 1987;33:511–513.

    Article  Google Scholar 

  2. Dollery C.Therapeutics Drugs. Edinburgh, UK: Churchill Livingstone: 1999:75–80.

    Google Scholar 

  3. Chien YW. Transdermal therapeutic system. In: Robinson JR, Lee VHL, eds.Controlled Drug Delivery Fundamentals and Applications. 2nd ed. New York, NY: Marcel Dekker; 1987:524–552.

    Google Scholar 

  4. Keith AD. Polymer matrix consideration for transdermal devices.Drug Dev Ind Pharm. 1983;9:605–621.

    Article  CAS  Google Scholar 

  5. Thassu D, Vyas SP. Controlled transdermal mucolytic delivery system.Drug Dev Ind Pharm. 1991;17:561–576.

    Article  CAS  Google Scholar 

  6. Wade A, Weller PJ.Handbook of Pharmaceutical Excipients. Washington, DC: American Pharmaceutical Publishing Association; 1994:362–366.

    Google Scholar 

  7. Panigrahi L, Pattnaik S, Ghosal SK. The effect of pH and organic ester penetration enhancers on skin permeation kinetics of terbutaline sulfate from pseudolatex-type transdermal delivery systems through mouse and human cadaver skins.AAPS PharmSciTech. 2005;6:E167-E173.

    Article  Google Scholar 

  8. Arora P, Mukherjee P. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt.J Pharm Sci. 2002;91:2076–2089.

    Article  CAS  Google Scholar 

  9. Gupta R, Mukherjee B. Development and in vitro evaluation of diltiazem hydrochloride transdermal patches based on povidone-ethyl cellulose matrices.Drug Dev Ind Pharm. 2003;29:1–7.

    Article  CAS  Google Scholar 

  10. Gehr TWB, Tenero DM, Boyle DA, Qian Y, Sica DA, Shusterman NH. The pharmacokinetics of carvedilol and its metabolites after single and multiple dose oral administration in patients with hypertension and renal insufficiency.Eur J Clin Pharmacol. 1999;55:299–277.

    Article  Google Scholar 

  11. Aqil M, Ali A, Sultana Y, Dubey K, Najmi KA, Pillai KK. In vivo characterization of monolithic matrix type transdermal drug delivery systems of pinacidil monohydrate: a technical note.AAPS PharmSciTech. 2006;7:E1.

    Article  Google Scholar 

  12. Aqil M, Sultana Y, Ali A, Dubey K, Najmi KA, Pillai KK. Transdermal drug delivery system of a beta blocker: design, in vitro, and in vivo characterization.Drug Deliv. 2004;11:27–31.

    Article  CAS  Google Scholar 

  13. Namdeo A, Jain NK. Liquid crystalline pharmacogel based enhanced transdermal delivery of propranolol hydrochloride.J Control Release. 2002;82:223–236.

    Article  CAS  Google Scholar 

  14. Mutalik S, Udupa N. Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations.J Pharm Sci. 2004;93:1577–1594.

    Article  CAS  Google Scholar 

  15. Katayose S, Kataoka K. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer.Bioconjug Chem. 1997;8:702–707.

    Article  CAS  Google Scholar 

  16. Ritger PL, Peppas NA. A simple equation for description of solute release, I: Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs.J Control Release. 1987;5:23–26.

    Article  CAS  Google Scholar 

  17. Rao PR, Diwan PV. Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration.Drug Dev Ind Pharm. 1998;24:327–336.

    Article  CAS  Google Scholar 

  18. Draize JH, Woodward G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes.J Pharmacol Exp Ther. 1944;82:377–379.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udhumansha Ubaidulla.

Additional information

Published; January 19, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ubaidulla, U., Reddy, M.V.S., Ruckmani, K. et al. Transdermal therapeutic system of carvedilol: Effect of hydrophilic and hydrophobic matrix on in vitro and in vivo characteristics. AAPS PharmSciTech 8, 2 (2007). https://doi.org/10.1208/pt0801002

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt0801002

Keywords

Navigation