Skip to main content

Advertisement

Log in

A mucoadhesive in situ gel delivery system for paclitaxel

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen’s phosphate buffer (pH 7.4) at 37°C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61%±0.19%, 12.0%±0.98%, 31.7%±0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drugloaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1%±4.35%, 44.2%±6.35%, and 97.1%±1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gendler SJ. MUC 1, the renaissance molecule. J Mammary Gland Biol Neoplasia. 2001;6:339–353.

    Article  CAS  Google Scholar 

  2. Schroeder JA, Thompson MC, Gardner MM, Gendler S. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem. 2001;276:13057–13064.

    Article  CAS  Google Scholar 

  3. Hamada T, Matsukita S, Goto M, et al. Mucin expression in pleomorphic adenoma of salivarygland: a potential role for MUC1 as a marker to predict recurrence. J Clin Pathol. 2004;57:813–821.

    Article  Google Scholar 

  4. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA. 1980;77:1561–1565.

    Article  CAS  Google Scholar 

  5. Schiff PB, Horwitz SB. Promotion of microtubule assembly in vitro by Taxol. Nature. 1979;277:665–667.

    Article  CAS  Google Scholar 

  6. Eiseman JL, Edington ND, Leslie J, et al. Plasma pharmokinetics and tissue distribution of paclitaxel in CD2 F1 mice. Can Chemother Pharmacol. 1994;34:465–471.

    CAS  Google Scholar 

  7. Brooks TA, Minderman H, O’Loughlin KL, et al. Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistant protein, and breast cancer resistance protein. Mol Cancer Ther. 2003;2:1195–1205.

    CAS  Google Scholar 

  8. Trissel LA. Pharmaceutical properties of paclitaxel and their effects on preparation and administration. Pharmacotherapy. 1997;17:133s-139s.

    CAS  Google Scholar 

  9. Chandy T, Sharma CP. Chitosan—as a biomaterial. Biomater Artif Cells Artif Organs. 1990;18:1–24.

    CAS  Google Scholar 

  10. Fiebrig I, Harding SE, Rowe AJ, Hyman SC, Davis SS. Transmission electron microscopy on pig gastric mucin and its interaction with chitosan. Carbohydr Polym. 1995;28:239–244.

    Article  CAS  Google Scholar 

  11. He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166:75–88.

    Article  CAS  Google Scholar 

  12. Lueßen HL, Lehr CM, Rentel CO, et al. Bioadhesive polymers for the peroral delivery of peptides drugs. J Control Release. 1994;29:329–338.

    Article  Google Scholar 

  13. Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47:229–250.

    Article  CAS  Google Scholar 

  14. Dash AK, Gong Z, Miller DW, Huai-Yan H, Laforet J. Development of a rectal nicotine delivery system for the treatment of ulcerative colitis. Int J Pharm. 1999;190:21–34.

    Article  CAS  Google Scholar 

  15. Nielsen LS, Schubert L, Hansen J. Bioadhesive drug delivery systems in characterization of mucoadhesive properties of systems based on glyceryl monooleate and glyceryl monolinoleate. Eur J Pharm Sci. 1998;6:231–239.

    Article  CAS  Google Scholar 

  16. Ganguly S, Dash AK. A novel in situ gel for sustained drug delivery and targeting. Int J Pharm. 2004;276:83–92.

    Article  Google Scholar 

  17. Dash AK, Miller DW, Huai-Yan H, Carnazzo J, Stout JR. Evaluation of creatine transport using Caco-2 monolayers as an in vitro model for intestinal absorption. J Pharm Sci. 2001;90:1593–1598.

    Article  CAS  Google Scholar 

  18. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspensions. J Pharm Sci. 1961;50:874–875.

    Article  CAS  Google Scholar 

  19. Cho YW, Lee J, Lee SC, Huh KM, Park K. Hydrotropic agents for study of in vitro Paclitaxel release from polymeric micelles. J Control Release. 2004;97:249–257.

    Article  Google Scholar 

  20. Walle UK, Walle T. Taxol transport by human intestinal epithelial Caco-2 cells. Drug Metab Dispos. 1998;26:343–346.

    CAS  Google Scholar 

  21. Hamilton KO, Backstrom G, Yazdanian MA, Audus KL. P-glycoprotein efflux pump expression and activity in Calu-3 cells. J Pharm Sci. 2001;90:647–658.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published: June 2, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauhari, S., Dash, A.K. A mucoadhesive in situ gel delivery system for paclitaxel. AAPS PharmSciTech 7, 53 (2006). https://doi.org/10.1208/pt070253

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt070253

Keywords

Navigation