Skip to main content
Log in

The crystal structure and physicochemical characteristics of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine, a new antitrypanosomal compound

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study was designed to investigate the physical characteristics and crystalline structure of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine (PNQ), a new active compound againstTrypanosoma cruzi, the causative agent of American trypanosomiasis. Methods used included differential scanning calorimetry, thermogravimetry, hot stage microscopy, polarized light microscopy (PLM), Fourier-transform infrared (FTIR) spectroscopy, and high-resolution X-ray powder diffraction (HR-XRPD). According to PLM and HR-XRPD data, PNQ crystallized as red oolitic crystals (absolute methanol) or prisms (dimethyl sulfoxide [DMSO]-water) with the same internal structure. The findings obtained with HR-XRPD data (applying molecular location methods) showed a monoclinic unit cell [a=18.4437(1)Å, b=3.9968(2) Å, c=14.5304(1) Å, α=90°, β=102.71(6)°, γ=90°, V=1044.9(1) Å3, Z=4, space group P21/c], and a crystal structure (excluding H-positions) described by parallel layers in the direction of theb-axis, with molecules held by homochemical (phenyl-phenyl and pyrazole-pyrazole) van der Waals interactions. In addition, FTIR spectra displayed the NH-pyrazole stretch overlapped with the OH absorption at 3222 cm−1, typical of-NH and-OH groups associated through H-bondings; and a carbonyl stretching absorption at 1694 cm−1, indicating a non-extensively H-bonded quinonic C=O, which was in accordance with the solved crystal structure of PNQ. The existence of such cohesive forces shed light on the thermo-analytical data, which revealed that PNQ is a stable solid, unaffected by oxygen that decomposed without melting above 260°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Figueroa JP. Report of the Workgroup on parasitic diseases.Morb Mortal Wkly Rep. 1999;48:118–125.

    Google Scholar 

  2. Ferreira RCC, Ferreira LCS. Mutagenicity of nifurtimox and benznidazole in the salmonella/microsome assay.Braz J Med Biol Res. 1986;19:19–25.

    CAS  Google Scholar 

  3. Radloff PD, Philips J, Nkeyi M, Hutchinson D, Krensner PG. Atovaquone and proguanil forplasmodium falciparum malaria.Lancet. 1996;347:1511–1514.

    Article  CAS  Google Scholar 

  4. Li CJ, Li YZ, Pinto AV, Pardee AB. Potent inhibition of tumor survival in vivo by β-lapachone plus taxol: combining drugs imposes different artificial checkpoints.Proc Natl Acad Sci USA. 1999;96:13369–13374.

    Article  CAS  Google Scholar 

  5. Sperandeo NR, Brun R. Synthesis and biological evaluation of pyrazolylnaphthoquinones as new potential antiprotozoal and cytotoxic agents.Chem Bio Chem. 2003;4:69–72.

    CAS  Google Scholar 

  6. Byrn SR, Pfeifer R, Stowell JF.Solid-State Chemistry of Drugs. 2nd ed. West Lafayette, IN: SSCI Inc; 1999.

    Google Scholar 

  7. Wells J.Pharmaceutical Preformulation: The Physicochemical Properties of Drug Substances. New York, NY: Ellis Horwood Ltd, John Wiley & Sons; 1993.

    Google Scholar 

  8. Britain HG.Physical Characterization of Pharmaceutical Solids Vol 70. New York, NY: Marcel Dekker Inc; 1995.

    Google Scholar 

  9. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK. The structure of malaria pigment β-haematin.Nature. 2000;404:307–310.

    Article  CAS  Google Scholar 

  10. Spek AL.PLATON, A Multipurpose Crystallographic Tool. 2001. Utrecht, The Netherlands: Utrecht University. Available at: http://www. cryst.chem.uu.nl/platon/. Accessed: July 8, 2005.

  11. Ghosh S, Ojala WH, Gleason WB, Grant DJW. Relationships between crystal structures, thermal properties and solvate stability of dialkylhydroxypyridones and their formic acid solvates.J Pharm Sci. 1995;84:1392–1399.

    Article  CAS  Google Scholar 

  12. United States Pharmacopeial Convention.United States Pharmacopeia XXVI. Washington, DC: United States Pharmacopeial Convention Inc. 2003.

    Google Scholar 

  13. Dinnebier RE. GUFI Powder Diffraction Software. 2002. Available at: http://www.fkf.mpg.de/xray/html/body_gufi_software.html. Accessed: July 8, 2005.

  14. Visser JW. A fully automatic program for finding the unit cell from powder data.J Appl Cryst [serial online]. 1969. Available at: http://sdpd.univ-lemans.fr/ftp/itol3.zip. Accessed: July 8, 2005.

  15. Le Bail A, Duroy H, Fourquet JL. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction.Mat Res Bull. 1988; 23:447–452.

    Article  Google Scholar 

  16. Rodriguez-Carvajal J. FULLPROF: A program for Rietveld refinement and pattern matching analysis.Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. 1990. Toulouse, France. Available at: http://www-llb.cea.fr/fullweb.powder.htm. Accessed: July 8, 2005.

  17. Larson AC, Von Dreele RB.GSAS, Generalized Crystal Structure Analysis System. 1987. Los Alamos, NM: Los Alamos National Laboratory Report Number LA-UR-86-748. Available at: http://www.ccp14.ac.uk/ccp/ccp 14/ftp-mirror/gsas/public/gsas/. Accessed: July 8, 2005.

  18. Stephens PW, Pagola S. Powder Structure Solution Program [computer program]. Version 2000. Available at: http://powder.physics. sunysb.edu/programPSSP/pssp.html. Accessed: July 8, 2005.

  19. Allen FH, Kennard O. 3D search and research using the Cambridge structural database.Chem Design Automation News. 1998;8:31–37.

    CAS  Google Scholar 

  20. Farrugia LJ, Program Ortep-3 for Windows.J Appl Cryst [serial online]. 1997. Available at: http://www.chem.gla.ac.uk/∼louis/software/. Accessed: July 8, 2005.

  21. Scott HG. The estimation of standard deviation in powder diffraction Rietveld refinements.J Appl Crystallogr. 1983;16:159–163.

    Article  CAS  Google Scholar 

  22. Focés-Focés C, Llamas-Saiz AL, Claramunt RM, López C, Elguero JJ. Structure of 3(5)-methyl-4-nitropyrazole in the solid state: tautomerism, crystallography and the problem of desmotropy.J Chem Soc Chem Commun. 1994:1143–1145.

  23. Fernández AE, de Bertorello MM, Manzo RH. Síntesis y propiedades espectroscópicas de aminoisoxazolilnaftoquinonas.Anales Asoc Quím Argent. 1982;70:49–60.

    Google Scholar 

  24. Sperandeo NR, de Bertorello MM, Briñón MC. Synthesis and some physicochemical properties of 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1,4-naphthoquinone-4-imine derivatives.J Pharm Sci. 1994;83:332–335.

    Article  CAS  Google Scholar 

  25. Dorn H, Zubek A. Bicyclische systeme aus acetessigester und 5-amino-1-methyl-5-amno-1-benzyl-sowie 3(5)-aminopyrazol.Chem Ber. 1968;101:3265–3277.

    Article  CAS  Google Scholar 

  26. Galwey AK. Thermal reaction of selected solids including reactants that melt during chemical change.J Thermal Anal. 1994;41:267–286.

    Article  CAS  Google Scholar 

  27. Sperandeo NR, de Bertorello MM. Solid state characterization of new protozoocidal agents—aminoisoxazolylnaphthoquinones.Thermochim Acta. 2001;378:69–77.

    Article  CAS  Google Scholar 

  28. Ford JL, Timmins P.Pharmaceutical Thermal Analysis: Techniques and Applications. New York, NY: Ellis Horwood Ltd, John Wiley & Sons; 1989.

    Google Scholar 

  29. Berbenni V, Marini A, Bruni G, Maggioni A, Riccardi R, Orlandi A. Physico-chemical characterization of different solid forms of spironolactona.Thermochim Acta. 1999;340–341:117–129.

    Article  Google Scholar 

  30. Marel Van Der HW. Quantitative differential thermal analysis of clay mineral and other minerals.Am Mineral. 1956;41:222–224.

    Google Scholar 

  31. MacKenzie RC, Michell BD. Differential thermal analysis data: a review.Analyst. 1962;87:420–434.

    Article  CAS  Google Scholar 

  32. Haleblian JK. Characterization of habits and crystalline modification of solids and their pharmaceutical applications.J Pharm Sci. 1975;64:1269–1288.

    Article  CAS  Google Scholar 

  33. Tiwary AK, Panpalia GM. Influence of crystal habit on trimethoprim suspension formulation.Pharm Res. 1999;16:261–265.

    Article  CAS  Google Scholar 

  34. Dresse A, Gegard MA, Lays A. Human pharmacokinetics of 2 crystalline and galenic forms of diflunisal, a new analgesic.Pharm Acta Helv. 1978;53:177–181.

    CAS  Google Scholar 

  35. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability.Pharm Res. 1995;12:413–420.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma R. Sperandeo.

Additional information

Published: December 27, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperandeo, N.R., Karlsson, A., Cuffini, S. et al. The crystal structure and physicochemical characteristics of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine, a new antitrypanosomal compound. AAPS PharmSciTech 6, 82 (2005). https://doi.org/10.1208/pt060482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt060482

Keywords

Navigation