Skip to main content
Log in

Optimizing the crystal size and habit of β-sitosterol in suspension

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this work was to survey how processing parameters affect the crystal growth of β-sitosterol in suspension. The process variables studied were the cooling temperature, stirring time and stirring rate during recrystallization. In addition, we investigated the effect a commonly used surfactant, polysorbate 80, has on crystal size distribution and the polymorphic form. This study describes the optimization of the crystallization process, with the object of preparing crystals as small as possible. Particle size distribution and habit were analyzed using optical microscopy, and the crystal structure was analyzed using X-ray diffractometry. The cooling temperature had a remarkable influence on the crystal size. Crystals with a median crystal length of ≈23 μm were achieved with a low cooling temperature (<10°C); however, a fairly large number of crystals over 50 μm appeared. Higher cooling temperatures (>30°C) caused notable crystal growth both in length and width. Rapid (250 rpm), continuous stirring until the suspensions had cooled to room temperature created small, less than 50 μm long (median <20 μm), needle-shaped crystals. The addition of surfactant slightly reduced the size of the initially large crystals. Both hemihydrate and monohydrate crystal forms occurred throughout, regardless of the processing parameters. By using an optimized process, it was possible to obtain a microcrystalline suspension, with a smooth texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mackellar AJ, Buckton G, Newton JM, Chowdhry BZ, Orr CA. The controlled crystallisation of a model powder. I. The effects of altering the stirring rate and the supersaturation profile and the incorporation of a surfactant (Poloxamer 188). Int J Pharm. 1994;112:65–78.

    Article  CAS  Google Scholar 

  2. Mullin JW. Crystallization. Oxford, UK: Butterworth-Heinemann; 2000.

    Google Scholar 

  3. Florence AT, Attwood D. Physicochemical Principles of Pharmacy. Basingstoke, UK: Macmillan Press Ltd, 1998.

    Google Scholar 

  4. Myerson AS, Ginde R. Crystals, crystal growth and nucleation. In: Handbook of Industrial Crystallization. St Louis, MO: Butterworth-Heinemann; 1993:33–63.

    Google Scholar 

  5. Boistelle R, Astier JP. Crystallization mechanisms in solution. J Cryst Growth. 1988;90:14–30.

    Article  CAS  Google Scholar 

  6. Schüth F. Nucleation and crystallization of solids from solutions. Curr Opin Solid State Mater Sci. 2001;5:389–395.

    Article  Google Scholar 

  7. Zipp GL, Rodriguez-Hornedo N. The mechanism of phenytoin crystal growth. Int J Pharm. 1993;98:189–201.

    Article  CAS  Google Scholar 

  8. Sunada H, Yamamoto A, Otsuka A, Yonezawa Y. Changes of surface area in the dissolution process of crystalline substances. Chem Pharm Bull. 1987;36(7):2557–2561.

    Google Scholar 

  9. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  Google Scholar 

  10. Rasenack N, Hartenhauer H, Müller BW. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int J Pharm. 2003;254:137–145.

    Article  CAS  Google Scholar 

  11. Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125:91–97.

    Article  CAS  Google Scholar 

  12. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–120.

    Article  CAS  Google Scholar 

  13. Mattson GM, Volpenheim FA, Erickson BA. Effect of plant sterol esters on the absorption of dietary cholesterol. J Nutr. 1997;107:1139–1146.

    Google Scholar 

  14. Christiansen LI, Rantanen JT, von Bonsdorff AK, Karjalainen MA, Yliruusi JK. A novel method of producing a microcrystalline β-sitosterol suspension in oil. Eur J Pharm Sci. 2001;15:261–269.

    Article  Google Scholar 

  15. Christiansen LI, Lähteenmäki PLA, Mannelin MR, Seppänen-Laakso TE, Hiltunen RVK, Yliruusi JK. Cholesterol-lowering effect of spreads enriched with microcrystalline plant sterols in hypercholesterolemic subjects. Eur J Nutr. 2001;40:66–73.

    Article  CAS  Google Scholar 

  16. von Bonsdorff-Nikander A, Karjalainen M, Rantanen J, Christiansen L, Yliruusi J. Physical stability of a microcrystalline β-sitosterol suspension in oil. Eur J Pharm Sci. 2003;19:173–179.

    Article  Google Scholar 

  17. Jones AG, Mullin JW. Programmed cooling crystallization of potassium sulphate solutions. Chem Eng Sci. 1974;29:105–118.

    Article  CAS  Google Scholar 

  18. Mullin JW, Raven KD. Nucleation in agitated solutions. Nature. 1961;190:251.

    Article  Google Scholar 

  19. Dogua J, Simon B. Crystallization of sodium perborate from aqueous solution. J Cryst Growth. 1978;44:265–279.

    Article  Google Scholar 

  20. Viaene J, Januszewska R. Quality function deployment in the chocolate industry. Food Quality and Preference. 1999;10:377–385.

    Article  Google Scholar 

  21. Tyle P. Effect of size, shape and hardness of particles in suspension on oral texture and palatability. Acta Psychologica. 1993;84:111–118.

    Article  CAS  Google Scholar 

  22. Mazzarotta B, Si Cave S, Bonifazi G. Influence of time on crystal attrition in a stirred vessel. AIChE J. 1996;42(12):3554–3558.

    Article  CAS  Google Scholar 

  23. Gibaldi M. Biopharmaceutics. In: Lachman L, Lieberman HA, Kanig JL, eds. The Theory and Practice of Industrial Pharmacy. 2nd ed. Philadelphia, PA. Lea & Febiger; 1976: 78–140.

    Google Scholar 

  24. Bisrat M, Nyström C. Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int J Pharm. 1988;47:223–231.

    Article  CAS  Google Scholar 

  25. Anderberg EK, Bisrat M, Nyström C. Physicochemical aspects of drug release. VII. The effect of surfactant concentration and drug particle size on solubility and dissolution rate of felodipine, a sparingly soluble drug. Int J Pharm. 1988;47:67–77.

    Article  CAS  Google Scholar 

  26. Rauls M, Bartosch K, Kind M, Kuch S, Racmann R, Mersmann A. The influence of impurities on crystallization kinetics—a case study on ammonium sulfate. J Cryst Growth. 2000;213:116–128.

    Article  CAS  Google Scholar 

  27. El-Bary AA, Kassem MAA, Foda N, Travel S, Badawi SS. Controlled crystallization of chlorpropamide from surfactant and polymer solutions. Drug Dev Ind Pharm. 1990;16(10):1649–1660.

    Article  Google Scholar 

  28. Mackellar AJ, Buckton G, Newton JM, Orr CA. The controlled crystallization of a model powder. II. Investigation into the mechanism of action of poloxamers in changing crystal properties. Int J Pharm. 1994;112:79–85.

    Article  CAS  Google Scholar 

  29. Kim CA, Choi HK. Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int J Pharm. 2002;236:81–85.

    CAS  Google Scholar 

  30. Luhtala S. Effect of sodium lauryl sulphate and polysorbate 80 on crystal growth and aqueous solubility of carbamazepine. Acta Pharm Nord. 1992;4(2):85–90.

    CAS  Google Scholar 

  31. Canselier JP. The effects of surfactants on crystallization phenomena. J Dispersion Sci Technol. 1993;14(6):625–644.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna von Bonsdorff-Nikander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Bonsdorff-Nikander, A., Rantanen, J., Christiansen, L. et al. Optimizing the crystal size and habit of β-sitosterol in suspension. AAPS PharmSciTech 4, 44 (2003). https://doi.org/10.1208/pt040344

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt040344

Keywords

Navigation