Skip to main content

Advertisement

Log in

Preparation, characterization, and biodistribution study of technetium-99m-labeled leuprolide acetate-loaded liposomes in ehrlich ascites tumor-bearing mice

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

The purpose of this study was to prepare conventional and sterically stabilized liposomes containing leuprolide acetate in an attempt to prolong the biological half life of the drug, to reduce the uptake by reticuloendothelial system (RES), and to reduce the injection frequency of intravenously administered peptide drugs. The conventional and sterically stabilized liposomes containing leuprolide acetate were prepared by reverse phase evaporation method and characterized for entrapment efficiency and particle size. Radiolabeling of leuprolide acetate and its liposomes was performed by direct labeling with reduced technetium-99m. Its biodistribution and imaging characteristics were studied in ehrlich ascites tumor (EAT)-bearing mice after labeling with technetium-99m. The systemic pharmacokinetic studies were performed in rabbits. A high uptake by tumor was observed by sterically stabilized liposome containing leuprolide acetate compared with free drug and conventional liposomes. The liver/tumor uptake ratio of free drug, conventional (LL), and sterically stabilized liposomes (SLL5000 and SLL2000) was found to be 20, 7.99, 1.63, and 1.23, respectively, which showed the increased accumulation of sterically stabilized liposomes in tumor compared with the free drug and conventional liposomes at 24 hours postinjection. Liver uptake of sterically stabilized liposomes was still 7-fold less than the conventional liposomes. The marked accumulation of liposomes in the tumor-bearing mice was also documented by gamma scintigraphic studies. The findings demonstrate the distribution of these liposomes within solid tumor and prove that the sterically stabilized liposomes experience increased tumor uptake and prolonged circulation half life. Hence these findings will be relevant for the optimal design of long circulating liposomes for the peptide drugs and for targeting of liposomes toward tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chrisp P, Sorkin EM. Leuprorelin. A review of its pharmacology and therapeutic use in prostatic disorders. Drugs Aging. 1991;1:487–509.

    Article  CAS  PubMed  Google Scholar 

  2. Oesterling JE. LHRH agonists. A nonsurgical treatment for benign prostatic hyperplasia. J Androl. 1991;12:381–388.

    CAS  PubMed  Google Scholar 

  3. Tunn UW, Bargelloni U, Cosciani S, Fiacavento G Guazzieris, Pagano F. Comparison of LHRH analogue 1 month depot and 3-month depot by their hormonal levels and pharmacokinetic profile in patients with advance prostate cancer. Urol Int. 1998;60(suppl 1):9–16.

    Article  CAS  PubMed  Google Scholar 

  4. Plosker GL, Brodgen RN, Leuprorelin. A review of its pharmacology and therapeutic use in prostate cancer, endometriosis and other sex hormone related disorders. Drugs. 1994;48(6):930–967.

    Article  CAS  PubMed  Google Scholar 

  5. Garnick MB. Leuprolide versus diethylstilbestrol for metastatic prostate cancer. N Engl J Med. 1984;311:1281–1286.

    Article  Google Scholar 

  6. Okada H, Sakura Y, Kawaji T, Yashiki T, Mima H. Regression of rat mammary tumors by a potent leutinizing hormone releasing hormone administered vaginally. Cancer Res. 1983;43:1869–1874.

    CAS  PubMed  Google Scholar 

  7. Redding TW, Schally AV. Inhibition of prostate tumor growth in two rat models by chronic administration of D-Trp6 analogue of LHRH. Proc Natl Acad Sci U S A. 1981;78:6509–6512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagai N, Oshita T, Mukai K, Shiroyama Y, Shigemasa K, Ohama K. GnRH agonist inhibits human telomerase reverse transcriptase mRNA expression in endometrial cancer cells. Int J Mol Med. 2002;10:593–597.

    CAS  PubMed  Google Scholar 

  9. Dondi D, Limnota P, Moretti RM, Marelli MM, Garattini E, Mota M. Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen independent prostate cancer cell line DU145: evidence for an autocrine-inhibitory loop. Cancer Res. 1994;54:4091–4095.

    CAS  PubMed  Google Scholar 

  10. Limonta P, Dondi D, Moretti RM, Maggi R, Motta M. Antiproliferative effects of luteinizing hormone-releasing hormone agonists on the human prostatic cancer cell line LNCaP. J Clin Endocrinol Metab. 1992;75:207–212.

    CAS  PubMed  Google Scholar 

  11. Dondi D, Moretti RM, Marelli MM, et al. Growth inhibitory effects of luteinizing hormone-releasing hormone (LHRH) agonists on xenografts of the DU 145 human androgen-independent prostate cancer cell line in nude mice. Int J Cancer. 1998;76:506–511.

    Article  CAS  PubMed  Google Scholar 

  12. Schally AV. Hypothalamic hormones from neuroendocrinology to cancer therapy. Anticancer Drugs. 1994;5:115–130.

    Article  CAS  PubMed  Google Scholar 

  13. Loop SM, Gorder CA, Lewis SM, Saiers JH, Drivdahl RH, Ostenson RC. Growth inhibition of human prostatic cancer cells by an agonist of gonadotropin-releasing hormone. Prostate. 1995;26:179–188.

    Article  CAS  PubMed  Google Scholar 

  14. Qayum A, Gullick W, Clayton RC, Sikora K, Waxman J. The effects of gonadotropin-releasing hormone analogues in prostate cancer are mediated through specific tumor receptors. Br J Cancer. 1990;62:96–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kakar SS, Grizzle WE, Neill JD. The nucleotide sequences of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary. Mol Cell Endocrinol. 1994;106:145–149.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson PM, Hanson DC, Hasz DE, Halet MR, Blazar BR, Ochoa AC. Cytokines in liposomes: Preliminary studies with IL-1, IL-2, IL-6, GM-CSF and Interferon Gamma. Cytokine. 1994;6:92–101.

    Article  CAS  PubMed  Google Scholar 

  17. Meyer J, Whitcomb L, Collins D. Efficient encapsulation of proteins within liposomes for slow release in vivo. Biochem Biophys Res Commun. 1994;199:433–438.

    Article  CAS  PubMed  Google Scholar 

  18. Perez-Soler R. Liposomes as carriers of antitumor agents; towards a clinical reality. Cancer Treat Rev. 1989;16:67–82.

    Article  CAS  PubMed  Google Scholar 

  19. Gabizon A. Liposomes as a drug delivery system in cancer chemotherapy. In: Roerdink F, Kroon A, eds. Drug Carrier Systems, Horizons in Biochemistry and Biophysics. New York, NY: John Wiley & Sons. Vol 9, 1989:185–211.

    Google Scholar 

  20. Gabizon AA, Shiota R, Papahadjopoulos D. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J Natl Cancer Inst. 1989;81:1484–1488.

    Article  CAS  PubMed  Google Scholar 

  21. Huang SK, Mayhew E, Gilani S, Lasic DD, Martin FJ, Papahadjopoulos D. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res. 1992;52:6774–6781.

    CAS  PubMed  Google Scholar 

  22. Allen TM, Hansen C, Martin F, Redemann C, Yan-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in-vivo. Biochim Biophys Acta. 1991;1066:29–36.

    Article  CAS  PubMed  Google Scholar 

  23. Allen TM, Mehra T, Hansen C, Chin YC. Stealth liposomes: and improved sustained release system for 1-beta-D arabinofuranosylcytosine. Cancer Res. 1992;52:2431–2439.

    CAS  PubMed  Google Scholar 

  24. Allen TA, Hansen C. Pharmacokinetics of stealth vs. conventional liposomes: Effect of dose. Biochim Biophys Acta. 1991;1068:133–141.

    Article  CAS  PubMed  Google Scholar 

  25. Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse evaporation. Proc Natl Acad Sci U S A. 1978;75:4194–4198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. New RRC. Liposomes: a practical approach. In: New RRC, ed. Preparation of Liposomes. New York, NY: Oxford University Press; 1990:95–96.

    Google Scholar 

  27. Adjei AL, Hsu L. Leuprolide and other LHRH analogues. In: John YW, Pearlman R, eds. Stability and Characterization of Protein and Peptide Drugs. New York, NY: Plenum Press; 1993:154–180.

    Google Scholar 

  28. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.

    Article  CAS  PubMed  Google Scholar 

  29. Richardson VJ, Jeyasingh K, Jewkes RF. Properties of [99mTc] technetium-labeled liposomes in normal and tumour-bearing rats. Biochem Soc Trans. 1977;5(1):290–229.

    Article  CAS  PubMed  Google Scholar 

  30. Theobald AE. Theory and practice. In: Sampson CB, ed. Textbook of Radiopharmacy. New York, NY: Gorden and Breach; 1990:127–128.

    Google Scholar 

  31. Wu MS, Robbins JC, Ponpipom MM, Shen TV. Modified in vivo behaviour of liposomes containing synthetic glycolipids. Biochim Biophys Acta. 1981;674:19–29.

    Article  CAS  PubMed  Google Scholar 

  32. Lo Y, Rahman Y. Protein location in liposomes, a drug carrier: a prediction by differential scanning calorimetry. J Pharm Sci. 1995;84:805–813.

    Article  CAS  PubMed  Google Scholar 

  33. Schafer H, Schmidt W, Lachmann U. Preparation and properties of GnRh-loaded multilamellar liposomes Pharmazie. 1987;42:674–677.

    CAS  PubMed  Google Scholar 

  34. Huang L. Covalently attached polymers and glycans to alter the biodistribution of liposomes. J Liposome Res. 1992;2:289–291.

    Article  Google Scholar 

  35. Litzinger CD, Buiting MJA, Rooijen VN, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta. 1994;1190:99–107.

    Article  CAS  PubMed  Google Scholar 

  36. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethylene glycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268:235–237.

    Article  CAS  PubMed  Google Scholar 

  37. Saha GB. Methods of radiolabeling. In: Saha GB, ed. Physics and Radiobiology of Nuclear Medicine. New York, NY: Springer-Verlag, 1993:100–106.

    Chapter  Google Scholar 

  38. Gabizon G, Papahadjopoulos D. Liposome formulation with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A. 1988;85:6949–6953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gabizon G, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethyleneglycol coated liposomes. Cancer Res. 1994;54:987–992.

    CAS  PubMed  Google Scholar 

  40. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 1990;9:253–256.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. R. Murthy.

Additional information

Published: February 6, 2004

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulsudar, N., Subramanian, N., Mishra, P. et al. Preparation, characterization, and biodistribution study of technetium-99m-labeled leuprolide acetate-loaded liposomes in ehrlich ascites tumor-bearing mice. AAPS J 6, 5 (2004). https://doi.org/10.1208/ps060105

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps060105

Keywords

Navigation