Skip to main content

Advertisement

Log in

High glucose concentration in isotonic media alters Caco-2 cell permeability

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Caco-2 cell permeability was evaluated in isotonic media containing high (25mM) or physiological (5.5mM) glucose concentrations. Transepithelial electrical resistance (TEER) and membrane fluidity were measured to assess glucose-induced alterations in physical barrier properties. In parallel, distribution of the actin filament (F-actin) and zonula occludens-1 (ZO-1) proteins was assessed by confocal microscopy. Transepithelial fluxes of mannitol, hydrocortisone, digoxin, and glycyl sarcosine (Gly-Sar) that permeate the intestinal mucosa by various pathways were measured to quantify the effect of glucose-induced changes on Caco-2 cell permeability. High glucose decreased maximum TEER of cell monolayers by 47%, whereas membrane fluidity at the hydrophobic core and lipid/polar head interphase was significantly increased. F-actin distribution in high glucose cells appeared more diffuse while ZO-1 was unchanged. Mannitol and hydrocortisone fluxes across Caco-2 cells cultured in high glucose increased by 65% and 24%, respectively. In addition, high glucose decreased the maximum transport capacity (Vmax) of PepT-1. P-glycoprotein activity, however, was unchanged. In conclusion, high extracellular glucose concentration in isotonic media significantly alters physical barrier properties of Caco-2 cell monolayers, which predominantly affects transepithelial transport of solutes permeating the cell barrier by paracellular and transcellular passive diffusion and facilitated transport mediated by the proton-dependent oligopeptide transporter (PepT-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee CP, de Vrueh, RLA, Smith PL. Selection of development candidates based on in vitro permeability measurements. Adv Drug Deliv Rev. 1997;23:47–62.

    Article  CAS  Google Scholar 

  2. Nielsen CU, Andersen R, Brodin B, Frokjaer S, Taub ME, Steffansen B. Dipeptide model prodrugs for the intestinal oligopeptide transporter: affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line. J Control Release. 2001;76:129–138.

    Article  CAS  Google Scholar 

  3. Friedrichsen GM, Jakobsen P, Taub M, Begtrup M. Application of enzymatically stable dipeptides for enhancement of intestinal permeability: synthesis and in vitro evaluation of dipeptide-coupled compounds. Bioorg Med Chem. 2001;9:2625–2632.

    Article  CAS  Google Scholar 

  4. Kulkarni A, Han Y, Hopfinger AJ. Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J Chem Inf Comput Sci. 2002;42:331–342.

    Article  CAS  Google Scholar 

  5. Bohets H, Annaert P, Mannens G, et al. Strategies for absorption screening in drug discovery and development. Curr Top Med Chem. 2001;1:367–383.

    Article  CAS  Google Scholar 

  6. Markowska M, Oberle R, Juzwin S, Hsu CP, Gryszkiewicz M, Streeter AJ. Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis. J Pharmacol Toxicol Methods. 2001;46:51–55.

    Article  CAS  Google Scholar 

  7. Liang E, Chessic K, Yazdanian M. Evaluation of an accelerated Caco-2 cell permeability model. J Pharm Sci. 2000;89:336–345.

    Article  CAS  Google Scholar 

  8. Parrott N, Lave T. Prediction of intestinal absorption: comparative assessment of GASTROPLUS and IDEA. Eur J Pharm Sci. 2002;17:51–61.

    Article  CAS  Google Scholar 

  9. Yamashita S, Konishi K, Yamazaki Y, et al. New and better protocols for a short-term Caco-2 cell culture system. J Pharm Sci. 2002;91:669–679.

    Article  CAS  Google Scholar 

  10. Briske-Anderson MJ, Finley JW, Newman SM. The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. Proc Soc Exp Biol Med. 1997;214:248–257.

    Article  CAS  Google Scholar 

  11. Bestwick CS, Milne L. Alteration of culture regime modifies antioxidant defenses independent of intracellular reactive oxygen levels and resistance to severe oxidative stress within confluent Caco-2 “intestinal cells”. Dig Dis Sci. 2001;46:417–423.

    Article  CAS  Google Scholar 

  12. Jumarie C, Malo C. Caco-2 cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro. J Cell Physiol. 1991;149:24–33.

    Article  CAS  Google Scholar 

  13. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96:736–749.

    Article  CAS  Google Scholar 

  14. Ha H, Lee HB. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int Suppl. 2000;77:S19-S25.

    Article  CAS  Google Scholar 

  15. Clarkson MR, Murphy M, Gupta S, et al. High glucose-altered gene expression in mesangial cells: actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly. J Biol Chem. 2002;277:9707–9712.

    Article  CAS  Google Scholar 

  16. D Souza VM, Buckley DJ, Buckley AR, Shertzer HG, Pauletti GM. Glucose-mediated regulation of the intestinal oligopeptide transporter (PepT-1) in Caco-2 cells. AAPS Pharm Sci. 2002;4. Abstract R6177.

  17. D Souza VM, Buckley DJ, Buckley AR, Pauletti GM. Extracellular glucose concentration alters functional activity of the intestinal oligopeptide transporter (PepT-1) in Caco-2 cells. J Pharm Sci. 2003;92:594–603.

    Article  CAS  Google Scholar 

  18. Rao R, Baker RD, Baker SS. Inhibition of oxidant-induced barrier disruption and protein tyrosine phosphorylation in Caco-2 cell monolayers by epidermal growth factor. Biochem Pharmacol. 1999;57:685–695.

    Article  CAS  Google Scholar 

  19. Banan A, Choudhary S, Zhang Y, Fields JZ, Keshavarzian A. Oxidant-induced intestinal barrier disruption and its prevention by growth factors in a human colonic cell line: role of the microtubule cytoskeleton. Free Radic Biol Med. 2000;28:727–738.

    Article  CAS  Google Scholar 

  20. Jourdheuil D, Meddings JB. Oxidative and drug-induced alterations in brush border membrane hemileaflet fluidity, functional consequences for glucose transport. Biochim Biophys Acta. 2001;1510:342–353.

    Article  CAS  Google Scholar 

  21. Banan A, Fields JZ, Zhang Y, Keshavarzian A. iNOS upregulation mediates oxidant-induced disruption of F-actin and barrier of intestinal monolayers. Am J Physiol Gastrointest Liver Physiol. 2001;280:G1234–1246.

    Article  CAS  Google Scholar 

  22. Wu SJ, Robinson JR. Transcellular and lipophilic complex-enhanced intestinal absorption of human growth hormone. Pharm Res. 1999;16:1266–1272.

    Article  CAS  Google Scholar 

  23. Pauletti GM, Okumu FW, Borchardt RT. Effect of size and charge on the passive diffusion of peptides across Caco-2 cell monolayers via the paracellular pathway. Pharm Res. 1997;14:164–168.

    Article  CAS  Google Scholar 

  24. Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol. 1999;13:154–168.

    Article  CAS  Google Scholar 

  25. Adson A, Raub TJ, Burton PS, et al. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci. 1994;83:1529–1536.

    Article  CAS  Google Scholar 

  26. Pade V, Stavchansky S. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm Res. 1997;14:1210–1215.

    Article  CAS  Google Scholar 

  27. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46:27–43.

    Article  CAS  Google Scholar 

  28. Ren S, Lien EJ. Caco-2 cell permeability vs human gastrointestinal absorption: QSPR analysis. Prog Drug Res. 2000;54:1–23.

    CAS  PubMed  Google Scholar 

  29. Madara JL, Moore R, Carlson S. Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol. 1987;253:C854–861.

    Article  CAS  Google Scholar 

  30. Tanaka Y, Taki Y, Sakane T, Nadai T, Sezaki H, Yamashita S. Characterization of drug transport through tight-junctional pathway in Caco-2 monolayer: comparison with isolated rat jejunum and colon. Pharm Res. 1995;12:523–528.

    Article  CAS  Google Scholar 

  31. Pappenheimer JR. Physiological regulation of epithelial junctions in intestinal epithelia. Acta Physiol Scand Suppl. 1988;571:43–51.

    CAS  PubMed  Google Scholar 

  32. Podolin DA, Sutherland E, Iwahashi M, Simon FR, Pagliassotti MJ. A high-sucrose diet alters the lipid composition and fluidity of liver sinusoidal membranes. Horm Metab Res. 1998;30:195–199.

    Article  CAS  Google Scholar 

  33. Stephens RH, O Neill CA, Warhurst A, Carlson GL, Rowland M, Warhurst G. Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J Pharmacol Exp Ther. 2001;296:584–591.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni M. Pauletti.

Additional information

Published: August 14, 2003

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, V.M.D., Shertzer, H.G., Menon, A.G. et al. High glucose concentration in isotonic media alters Caco-2 cell permeability. AAPS PharmSci 5, 24 (2003). https://doi.org/10.1208/ps050324

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps050324

Keywords

Navigation