Skip to main content

Advertisement

Log in

cDNA Microarray analysis of vascular gene expression after nitric oxide donor infusion in rats: Implications for nitrate tolerance mechanisms

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Vascular nitrate tolerance is often accompanied by changes in the activity and/or expression of a number of proteins. However, it is not known whether these changes are associated with the vasodilatory properties of nitrates, or with their tolerance mechanisms. We examined the hemodynamic effects and vascular gene expressions of 2 nitric oxide (NO) donors: nitroglycerin (NTG) and S-nitroso-N-acetylpenicillamine (SNAP). Rats received 10 μg/min NTG, SNAP, or vehicle infusion for 8 hours. Hemodynamic tolerance was monitored by the maximal mean arterial pressure (MAP) response to a 30-μg NTG or SNAP bolus challenge dose (CD) at various times during infusion. Gene expression in rat aorta after NTG or SNAP treatment was determined using cDNA microarrays, and the relative differences in expression after drug treatment were evaluated using several statistical techniques. MAP response of the NTG CD was attenuated from the first hour of NTG infusion (P<.001, analysis of variance [ANOVA]), but not after SNAP (P>.05, ANOVA) or control infusion (P> .05, ANOVA). Student t-statistics revealed that 447 rat genes in the aorta were significantly altered by NTG treatment (P <.05). An adjusted t-statistic approach using resampling techniques identified a subset of 290 genes that remained significantly different between NTG treatment vs control. In contrast, SNAP treatment resulted in the up-regulation of only 7 genes and the downregulation of 34 genes. These results indicate that continuous NTG infusion induced widespread changes in vascular gene expression, many of which are consistent with the multifactorial and complex mechanisms reported for nitrate tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987; 84: 9265–9269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327: 524–526.

    Article  CAS  PubMed  Google Scholar 

  3. Feelisch M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch Pharmacol. 1998; 358: 113–122.

    Article  CAS  PubMed  Google Scholar 

  4. Tseng CM, Tabrizi-Fard MA, Fung HL. Differential sensitivity among nitric oxide donors toward ODQ-mediated inhibition of vascular relaxation. J Pharmacol Exp Ther. 2000; 292: 737–742.

    CAS  PubMed  Google Scholar 

  5. Fung HL, Bauer JA. Mechanisms of nitrate tolerance. Cardiovasc Drugs Ther. 1994; 8: 489–499.

    Article  CAS  PubMed  Google Scholar 

  6. Needleman P, Johnson EM, Jr. Mechanism of tolerance development to organic nitrates. J Pharmacol Exp Ther. 1973; 184: 709–715.

    CAS  PubMed  Google Scholar 

  7. Fung HL, Piliszczuk R. Nitrosothiol and nitrate tolerance. Z Kardiol. 1986; 75: 25–27.

    CAS  PubMed  Google Scholar 

  8. Axelsson KL, Andersson RG. Tolerance towards nitroglycerin, induced in vivo, is correlated to a reduced cGMP response and an alteration in cGMP turnover. Eur J Pharmacol. 1983; 88: 71–79.

    Article  CAS  PubMed  Google Scholar 

  9. Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG. Evidence for enhanced vascular superoxide anion production in nitrate tolerance: a novel mechanism underlying tolerance and crosstolerance. J Clin Invest. 1995; 95: 187–194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Munzel T, Giaid A, Kurz S, Stewart DJ, Harrison DG. Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc Natl Acad Sci USA. 1995; 92: 5244–5248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Munzel T, Li H, Mollnau H, et al. Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res. 2000; 86: E7-E12.

    Article  CAS  PubMed  Google Scholar 

  12. Lander ES. Array of hope. Nat Genet. 1999; 21: 3–4.

    Article  CAS  PubMed  Google Scholar 

  13. Taniguchi M, Miura K, Iwao H, Yamanaka S. Quantitative assessment of DNA microarrays--comparison with Northern blot analyses. Genomics. 2001; 71: 34–39.

    Article  CAS  PubMed  Google Scholar 

  14. Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature. 1998; 391: 169–173.

    Article  CAS  PubMed  Google Scholar 

  15. Lipton AJ, Johnson MA, Macdonald T, Lieberman MW, Gozal D, Gaston B. S-nitrosothiols signal the ventilatory response to hypoxia. Nature. 2001; 413: 171–174.

    Article  CAS  PubMed  Google Scholar 

  16. Kowaluk EA, Poliszczuk R, Fung HL. Tolerance to relaxation in rat aorta: comparison of an S-nitrosothilol with nitroglycerin. Eur J Pharmacol. 1987; 144: 379–383.

    Article  CAS  PubMed  Google Scholar 

  17. Bauer JA, Fung HL. Differential hemodynamic effects and tolerance properties of nitroglycerin and an S-nitrosothiol in experimental heart failure. J Pharmacol Exp Ther. 1991; 256: 249–254.

    CAS  PubMed  Google Scholar 

  18. Matsumoto T, Takahashi M, Nakae I, Kinoshita M. Vasorelaxing effect of S-nitrosocaptopril on dog coronary arteries: no crosstolerance with nitroglycerin. J Pharmacol Exp Ther. 1995; 275: 1247–1253.

    CAS  PubMed  Google Scholar 

  19. Schuchhardt J, Beule D, Malik A, et al. Normalization strategies for cDNA microarrays. Nucleic Acids Res. 2000; 28: E47:i–v.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lee ML, Kuo FC, Whitmore GA, Sklar J. Importance of replication in microarray gene expression studies statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA. 2000; 97: 9834–9839.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Good P. Resampling Methods: A Practical Guide to Data Analysis. New York, NY: Springer-Verlag: 1999.

    Book  Google Scholar 

  22. Edgington E. Randonization Tests. New York, NY: Marcel Dekker, Inc.; 1980.

    Google Scholar 

  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39: 783–791.

    Article  Google Scholar 

  24. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992; 131: 479–491.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med. 2000; 19: 1141–1164.

    Article  CAS  PubMed  Google Scholar 

  26. Westfall PH, Young SS. Resampling-based Multiple Testing: Examples and Methods for p-adjustment. New York, NY: Wiley: 1993.

    Google Scholar 

  27. Kerr MK, Churchill GA. Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc Natl Acad Sci USA. 2001; 98: 8961–8965.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001; 98: 5116–5121.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Herwig R, Aanstad P, Clark M, Lehrach H. Statistical evaluation of differential expression on cDNA nylon arrays with replicated experiments. Nucleic Acids Res. 2001; 29: E117: 1–9.

    Article  Google Scholar 

  30. Kowaluk EA, Fung HL. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J Pharmacol Exp Ther. 1990; 255: 1256–1264.

    CAS  PubMed  Google Scholar 

  31. Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001; 410: 490–494.

    Article  CAS  PubMed  Google Scholar 

  32. Yamamoto T, Bing RJ. Nitric oxide donors. Proc Soc Exp Biol Med. 2000; 225: 200–206.

    Article  CAS  PubMed  Google Scholar 

  33. Miller RA, Galecki A, Shmookler-Reis RJ. Interpretation, design, and analysis of gene array expression experiments. J Gerontol A Biol Sci Med Sci. 2001; 56: B52–57.

    Article  CAS  PubMed  Google Scholar 

  34. Dudoit S, Yang YH, Callow M, Speed T. Statistical methods for identifying differentially expressed genes in replicated cDNA microarry experiments. UC Berkeley, Technical report #578, 2000.

  35. Feelisch M. The biochemical pathways of nitric oxide formation from nitrovasodilators: appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solution. J Cardiovasc Pharmacol. 1991; 17: S25-S33.

    Article  CAS  Google Scholar 

  36. Bennett BM, McDonald BJ, Nigam R, Simon WC. Biotransformation of organic nitrates and vascular smooth muscle cell function. Trends Pharmacol Sci. 1994; 15: 245–249.

    Article  CAS  PubMed  Google Scholar 

  37. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA. 2001; 98: 9050–9055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Huber A, Neuhuber WL, Klugbauer N, Ruth P, Allescher HD. Cysteine-rich protein 2, a novel substrate for cGMP kinase I in enteric neurons and intestinal smooth muscle. J Biol Chem. 2000; 275: 5504–5511.

    Article  CAS  PubMed  Google Scholar 

  39. Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol. 2000; 20: 1430–1442.

    Article  CAS  PubMed  Google Scholar 

  40. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res. 1999; 85: 753–766.

    Article  CAS  PubMed  Google Scholar 

  41. Fox PL, Mazumder B, Ehrenwald E, Mukhopadhyay CK. Ceruloplasmin and cardiovascular disease. Free Radic Biol Med. 2000; 28: 1735–1744.

    Article  CAS  PubMed  Google Scholar 

  42. Floris G, Medda R, Padiglia A, Musci G. The physiopathological significance of ceruloplasmin: a possible therapeutic approach. Biochem Pharmacol. 2000; 60: 1735–1741.

    Article  CAS  PubMed  Google Scholar 

  43. Meininger CJ, Marinos RS, Hatakeyama K, et al. Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J. 2000; 349: 353–356.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Leung Fung.

Additional information

Published: May 7, 2002

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E.Q., Lee, WI., Brazeau, D. et al. cDNA Microarray analysis of vascular gene expression after nitric oxide donor infusion in rats: Implications for nitrate tolerance mechanisms. AAPS PharmSci 4, 10 (2002). https://doi.org/10.1208/ps040208

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps040208

KeyWords

Navigation